
Appendix B

The Magic of Iteration

The subject of this appendix is one of our favorites in all of mathe-

matics, and it’s not hard to explain why. As you will see, the basic

theorem, the Banach Contraction Principle, has a simple and elegant

statement and a proof to match. And yet, at the same time, it is

extremely powerful, having as easy consequences two of the most im-

portant foundations of advanced analysis, the Implicit Function The-

orem and the Local Existence and Uniqueness Theorem for systems

of ODE.

But there is another aspect that we find very appealing, and that

is that the basic technique that goes into the contraction principle,

namely iteration of a mapping, leads to remarkably simple and ef-

fective algorithms for solving equations. Indeed what the Banach

Contraction Principle teaches us is that if we have a good algorithm

for evaluating a function 𝑓(𝑥), then we can often turn it into an al-

gorithm for inverting 𝑓 , i.e., for solving 𝑓(𝑥) = 𝑦!

B.1. The Banach Contraction Principle

In what follows we will assume that 𝑋 is a metric space and that

𝑓 : 𝑋 → 𝑋 is a continuous mapping of 𝑋 to itself. Since 𝑓 maps 𝑋

to itself, we can compose 𝑓 with itself any number of times, so we

can define 𝑓0(𝑥) = 𝑥, 𝑓1(𝑥) = 𝑓(𝑥), 𝑓2(𝑥) = 𝑓(𝑓(𝑥)), and inductively

𝑓𝑛+1(𝑥) = 𝑓(𝑓𝑛(𝑥)). The sequence 𝑓𝑛(𝑥) is called the sequence of

iterates of 𝑥 under 𝑓 , or the orbit of 𝑥 under 𝑓 . By associativity

of composition, 𝑓𝑛(𝑓𝑚(𝑥)) = 𝑓𝑛+𝑚(𝑥), and by Exercise A-1 of Ap-

pendix A, if 𝐾 is a Lipschitz constant for 𝑓 , then 𝐾𝑛 is a Lipschitz
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234 B. The Magic of Iteration

constant for 𝑓𝑛. We shall use both of these facts below without fur-

ther mention.

A point 𝑥 of 𝑋 is called a fixed point of 𝑓 if 𝑓(𝑥) = 𝑥. Notice

that finding a fixed point amounts to solving a special kind of equa-

tion. What may not be obvious is that solving many other types of

equations can often be reduced to solving a fixed-point equation. We

will give other examples later, but here is a typical reduction. As-

sume that 𝑉 is a vector space and that we want to solve the equation

𝑔(𝑥) = 𝑦 for some (usually nonlinear) map 𝑔 : 𝑉 → 𝑉 . Define a new

map 𝑓 : 𝑉 → 𝑉 by 𝑓(𝑥) = 𝑥−𝑔(𝑥)+𝑦. Then clearly 𝑥 is a fixed point

of 𝑓 if and only if it solves 𝑔(𝑥) = 𝑦. This is in fact the trick used

to reduce the Inverse Function Theorem to the Banach Contraction

Principle.

The Banach Contraction Principle is a very general technique for

finding fixed points. First notice the following: if 𝑥 is a point of

𝑋 such that the sequence 𝑓𝑛(𝑥) of iterates of 𝑥 converges to some

point 𝑝, then 𝑝 is a fixed point of 𝑓 . In fact, by the continuity of 𝑓 ,

𝑓(𝑝) = 𝑓(lim𝑛→∞ 𝑓𝑛(𝑥)) = lim𝑛→∞ 𝑓(𝑓𝑛(𝑥)) = lim𝑛→∞ 𝑓𝑛+1(𝑥) =

𝑝. We will see that if 𝑓 is a contraction, then for any point 𝑥 of 𝑋

the sequence of iterates of 𝑥 is in any case a Cauchy sequence, so if

𝑋 is complete, then it converges to a fixed point 𝑝 of 𝑓 . In fact, we

will see that a contraction can have at most one fixed point 𝑝, and so

to locate this 𝑝 when 𝑋 is complete, we can start at any point 𝑥 and

“follow the iterates of 𝑥 to their limit”. This in essence is the Banach

Contraction Principle. Here are the details.

B.1.1. Fundamental Contraction Inequality. If 𝑓 : 𝑋 → 𝑋

is a contraction mapping and if 𝐾 < 1 is a Lipschitz constant for 𝑓 ,

then for all 𝑥1 and 𝑥2 in 𝑋,

𝜌(𝑥1, 𝑥2) ≤ 1

1−𝐾
(𝜌(𝑥1, 𝑓(𝑥1)) + 𝜌(𝑥2, 𝑓(𝑥2))).

Proof. The triangle inequality,

𝜌(𝑥1, 𝑥2) ≤ 𝜌(𝑥1, 𝑓(𝑥1)) + 𝜌(𝑓(𝑥1), 𝑓(𝑥2)) + 𝜌(𝑓(𝑥2), 𝑥2),
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together with 𝜌(𝑓(𝑥1), 𝑓(𝑥2)) ≤ 𝐾𝜌(𝑥1, 𝑥2) gives

𝜌(𝑥1, 𝑥2)−𝐾𝜌(𝑥1, 𝑥2) ≤ 𝜌(𝑥1, 𝑓(𝑥1)) + 𝜌(𝑓(𝑥2), 𝑥2).

Since 1−𝐾 > 0, the desired inequality follows.

This is a very strange inequality: it says that we can estimate

how far apart any two points 𝑥1 and 𝑥2 are just from knowing how

far 𝑥1 is from its image 𝑓(𝑥1) and how far 𝑥2 is from its image 𝑓(𝑥2).

As a first application we have

B.1.2. Corollary. A contraction can have at most one fixed

point.

Proof. If 𝑥1 and 𝑥2 are both fixed points, then 𝜌(𝑥1, 𝑓(𝑥1)) and

𝜌(𝑥2, 𝑓(𝑥2)) are zero, so by the Fundamental Inequality 𝜌(𝑥1, 𝑥2) is

also zero.

B.1.3. Proposition. If 𝑓 : 𝑋 → 𝑋 is a contraction mapping,

then, for any 𝑥 in 𝑋, the sequence 𝑓𝑛(𝑥) of iterates of 𝑥 under 𝑓 is a

Cauchy sequence.

Proof. Taking 𝑥1 = 𝑓𝑛(𝑥) and 𝑥2 = 𝑓𝑚(𝑥) in the Fundamental

Inequality gives

𝜌(𝑓𝑛(𝑥), 𝑓𝑚(𝑥)) ≤ 1

1−𝐾
(𝜌(𝑓𝑛(𝑥), 𝑓𝑛(𝑓(𝑥))) + 𝜌(𝑓𝑚(𝑥), 𝑓𝑚(𝑓(𝑥)))).

Since 𝐾𝑛 is a Lipschitz constant for 𝑓𝑛,

𝜌(𝑓𝑛(𝑥), 𝑓𝑚(𝑥)) ≤ 𝐾𝑛 +𝐾𝑚

1−𝐾
𝜌(𝑥, 𝑓(𝑥)),

and since 0 ≤ 𝐾 < 1, 𝐾𝑛 → 0, so 𝜌(𝑓𝑛(𝑥), 𝑓𝑚(𝑥)) → 0 as 𝑛 and 𝑚

tend to infinity.

B.1.4. Banach Contraction Principle. If 𝑋 is a complete

metric space and 𝑓 : 𝑋 → 𝑋 is a contraction mapping, then 𝑓 has a

unique fixed point 𝑝, and for any 𝑥 in 𝑋 the sequence 𝑓𝑛(𝑥) converges

to 𝑝.
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Proof. The proof is immediate from the above.

⊳Exercise B–1. Use the mean value theorem of differential calcu-

lus to show that if 𝑋 = [𝑎, 𝑏] is a closed interval and 𝑓 : 𝑋 → 𝑅

is a continuously differentiable real-valued function on 𝑋, then the

maximum value of ∣𝑓 ′∣ is the smallest possible Lipschitz constant for

𝑓 . In particular sin(1) (which is less than 1) is a Lipschitz constant

for the cosine function on the interval 𝑋 = [−1, 1]. Note that for any

𝑥 in 𝑅 the iterates of 𝑥 under cosine are all in 𝑋. Deduce that no

matter where you start, the successive iterates of cosine will always

converge to the same limit. Put your calculator in radian mode, enter

a random real number, and keep hitting the cos button. What do the

iterates converge to?

As the above exercise suggests, if we can reinterpret the solution

of an equation as the fixed point of a contraction mapping, then it

is an easy matter to write an algorithm to find it. Well, almost—

something important is still missing, namely, when should we stop

iterating and take the current value as the “answer”? One possibility

is to just keep iterating until the distance between two successive

iterates is smaller than some predetermined “tolerance” (perhaps the

machine precision). But this seems a little unsatisfactory, and there

is actually a much neater “stopping rule”.

Suppose we are willing to accept an “error” of 𝜖 in our solu-

tion; i.e., instead of the actual fixed point 𝑝 of 𝑓 we will be happy

with any point 𝑝′ of 𝑋 satisfying 𝜌(𝑝, 𝑝′) < 𝜖. Suppose also that

we start our iteration at some point 𝑥 in 𝑋. It turns out that it

is easy to specify an integer 𝑁 so that 𝑝′ = 𝑓𝑁 (𝑥) will be a satis-

factory answer. The key, not surprisingly, lies in the Fundamental

Inequality, which we apply now with 𝑥1 = 𝑓𝑁 (𝑥) and 𝑥2 = 𝑝. It

tells us that 𝜌(𝑓𝑁 (𝑥), 𝑝) ≤ 1
1−𝐾 𝜌(𝑓𝑁 (𝑥), 𝑓𝑁 (𝑓(𝑥))) ≤ 𝐾𝑁

1−𝐾 𝜌(𝑥, 𝑓(𝑥)).

Since we want 𝜌(𝑓𝑁 (𝑥), 𝑝) ≤ 𝜖, we just have to pick 𝑁 so large that
𝐾𝑁

1−𝐾 𝜌(𝑥, 𝑓(𝑥)) < 𝜖. Now the quantity 𝑑 = 𝜌(𝑥, 𝑓(𝑥)) is something

that we can compute after the first iteration and we can then com-

pute how large 𝑁 has to be by taking the log of the above inequality

and solving for 𝑁 (remembering that log(𝐾) is negative). We can

express our result as
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B.1.5. Stopping Rule. If 𝑑 = 𝜌(𝑥, 𝑓(𝑥)) and

𝑁 >
log(𝜖) + log(1−𝐾)− log(𝑑)

log(𝐾)
,

then 𝜌(𝑓𝑁 (𝑥), 𝑝) < 𝜖.

From a practical programming point of view, this allows us to

express our iterative algorithm with a “for loop” rather than a “while

loop”, but this inequality has another interesting interpretation. Sup-

pose we take 𝜖 = 10−𝑚 in our stopping rule inequality. What we see

is that the growth of 𝑁 with 𝑚 is a constant plus 𝑚/∣ log(𝐾)∣, or in
other words, to get one more decimal digit of precision we have to do

(roughly) 1/∣ log(𝐾)∣ more iteration steps. Stated a little differently,

if we need 𝑁 iterative steps to get 𝑚 decimal digits of precision, then

we need another 𝑁 to double the precision to 2𝑚 digits.

We say a numerical algorithm has linear convergence if it ex-

hibits this kind of error behavior, and if you did the exercise above

for locating the fixed point of the cosine function, you would have

noticed it was indeed linear. Linear convergence is usually considered

somewhat unsatisfactory. A much better kind of convergence is qua-

dratic, which means that each iteration should (roughly) double the

number of correct decimal digits. Notice that the actual linear rate

of convergence predicted by the above stopping rule is 1/∣ log(𝐾)∣.
So one obvious trick to get better convergence is to see to it that the

best Lipschitz constant for our iterating function 𝑓 in a neighborhood

of the fixed point 𝑝 actually approaches zero as the diameter of the

neighborhood goes to zero. If this happens at a fast enough rate, we

may even achieve quadratic convergence, and that is what actually

occurs in “Newton’s Method”, which we study next.

⊳Exercise B–2. Newton’s Method for finding
√
2 gives the itera-

tion 𝑥𝑛+1 = 𝑥𝑛/2 + 1/𝑥𝑛. Start with 𝑥0 = 1, and carry out a few

steps to see the impressive effects of quadratic convergence.

B.1.6. Remark. Suppose 𝑉 and 𝑊 are orthogonal vector spaces,

𝑈 is a convex open set in 𝑉 , and 𝑓 : 𝑈 → 𝑊 is a continuously dif-

ferentiable map. Let’s try to generalize the exercise above to find a
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Lipschitz constant for 𝑓 . If 𝑝 is in 𝑈 , then recall that 𝐷𝑓𝑝, the dif-

ferential of 𝑓 at 𝑝, is a linear map of 𝑉 to 𝑊 defined by 𝐷𝑓𝑝(𝑣) =

(𝑑/𝑑𝑡)𝑡=0𝑓(𝑝+ 𝑡𝑣), and it then follows that if 𝜎(𝑡) is any smooth path

in 𝑈 , then 𝑑/𝑑𝑡𝑓(𝜎(𝑡)) = 𝐷𝑓𝜎(𝑡)(𝜎
′(𝑡)). If 𝑝 and 𝑞 are any two points

of 𝑈 and if 𝜎(𝑡) = 𝑝+𝑡(𝑞−𝑝) is the line joining them, then integrating

the latter derivative from 0 to 1 gives the so-called “finite difference

formula”: 𝑓(𝑞)−𝑓(𝑝) =
∫ 1

0
𝐷𝑓𝜎(𝑡)(𝑞−𝑝) 𝑑𝑡. Now recall that if 𝑇 is any

linear map of 𝑉 to 𝑊 , then its norm ∥𝑇∥ is the smallest nonnegative

real number 𝑟 so that ∥𝑇𝑣∥ ≤ 𝑟 ∥𝑣∥ for all 𝑣 in 𝑉 . Since
∥∥∥∫ 𝑏

𝑎
𝑔(𝑡) 𝑑𝑡

∥∥∥ ≤
∫ 𝑏

𝑎
∥𝑔(𝑡)∥ 𝑑𝑡, ∥𝑓(𝑞)− 𝑓(𝑝)∥ ≤ (

∫ 1

0

∥∥𝐷𝑓𝜎(𝑡)
∥∥ 𝑑𝑡) ∥(𝑞 − 𝑝)∥, and it fol-

lows that the supremum of ∥𝐷𝑓𝑝∥ for 𝑝 in 𝑈 is a Lipschitz constant

for 𝑓 . (In fact, it is the smallest one.)

B.2. Newton’s Method

The algorithm called “Newton’s Method” has proved to be an ex-

tremely valuable tool with countless interesting generalizations, but

the first time one sees the basic idea explained, it seems so utterly

obvious that it is hard to be very impressed.

Suppose 𝑔 : 𝑅 → 𝑅 is a continuously differentiable real-valued

function of a real variable and 𝑥0 is an “approximate root” of 𝑔, in

the sense that there is an actual root 𝑝 of 𝑔 close to 𝑥0. Newton’s

Method says that to get an even better approximation 𝑥1 to 𝑝, we

should take the point where the tangent line to the graph of 𝑔 at 𝑥0

meets the 𝑥-axis, namely 𝑥1 = 𝑥0−𝑔(𝑥0)/𝑔
′(𝑥0). Recursively, we can

then define 𝑥𝑛+1 = 𝑥𝑛 − 𝑔(𝑥𝑛)/𝑔
′(𝑥𝑛) and get the root 𝑝 as the limit

of the resulting sequence {𝑥𝑛}.
Typically one illustrates this with some function like 𝑔(𝑥) = 𝑥2−2

and 𝑥0 = 1 (see the exercise above). But the simple picture in this

case hides vast difficulties that could arise in other situations. The

𝑔′(𝑥0) in the denominator is a tip-off that things are not going to

be simple. Even if 𝑔′(𝑥0) is different from zero, 𝑔′ could still vanish

several times (even infinitely often) between 𝑥0 and 𝑝. In fact, deter-

mining the exact conditions under which Newton’s Method “works”

is a subject in itself, and generalizations of this problem constitute

an interesting and lively branch of discrete dynamical systems theory.
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We will not go into any of these interesting but complicated questions,

but rather content ourselves with showing that under certain simple

circumstances we can derive the correctness of Newton’s Method from

the Banach Contraction Principle.

It is obvious that the right function 𝑓 to use in order to make

the Contraction Principle iteration reduce to Newton’s Method is

𝑓(𝑥) = 𝑥−𝑔(𝑥)/𝑔′(𝑥) and that a fixed point of this 𝑓 is indeed a root

of 𝑔. On the other hand it is clear that this cannot work if 𝑔′(𝑝) = 0,

so we will assume that 𝑝 is a “simple root” of 𝑔, i.e., that 𝑔′(𝑝) ∕= 0.

Given 𝛿 > 0, let 𝑁𝛿(𝑝) = {𝑥 ∈ 𝑅 ∣ ∣𝑥 − 𝑝∣ ≤ 𝛿}. We will show that

if 𝑔 is 𝐶2 and 𝛿 is sufficiently small, then 𝑓 maps 𝑋 = 𝑁𝛿(𝑝) into

itself and is a contraction on 𝑋. Of course we choose 𝛿 so small that

𝑔′ does not vanish on 𝑋, so 𝑓 is well-defined on 𝑋. It will suffice to

show that 𝑓 has a Lipschitz constant 𝐾 < 1 on 𝑋, for then if 𝑥 ∈ 𝑋,

then

∣𝑓(𝑥)− 𝑝∣ = ∣𝑓(𝑥)− 𝑓(𝑝)∣ ≤ 𝐾∣𝑥− 𝑝∣ < 𝛿,

so 𝑓(𝑥) is also in 𝑋.

But, by one of the exercises, to prove that 𝐾 is a Lipschitz bound

for 𝑓 in 𝑋, we only have to show that ∣𝑓 ′(𝑥)∣ ≤ 𝐾 in 𝑋. Now an easy

calculation shows that 𝑓 ′(𝑥) = 𝑔(𝑥)𝑔′′(𝑥)/𝑔′(𝑥)2. Since 𝑔(𝑝) = 0, it

follows that 𝑓 ′(𝑝) = 0 so, by the evident continuity of 𝑓 ′, given any

𝐾 > 0, ∣𝑓 ′(𝑥)∣ ≤ 𝐾 in 𝑋 if 𝛿 is sufficiently small.

The fact that the best Lipschitz bound goes to zero as we ap-

proach the fixed point is a clue that we should have better than linear

convergence with Newton’s Method, but quadratic convergence is not

quite a consequence. Here is the proof of that.

Let 𝐶 denote the maximum of ∣𝑓 ′′(𝑥)∣ for 𝑥 in 𝑋. Since 𝑓(𝑝) = 𝑝

and 𝑓 ′(𝑝) = 0, Taylor’s Theorem with Remainder gives ∣𝑓(𝑥) − 𝑝∣ ≤
𝐶∣𝑥 − 𝑝∣2. This just says that the error after 𝑛 + 1 iterations is

essentially the square of the error after 𝑛 iterations.

Generalizing Newton’s Method to find zeros of a 𝐶2 map 𝐺 :

R𝑛 → R𝑛 is relatively straightforward. Let 𝑥0 ∈ R𝑛 be an ap-

proximate zero of 𝐺, again in the sense that there is a 𝑝 close to 𝑥

with 𝐺(𝑝) = 0. Let’s assume now that 𝐷𝐺𝑝, the differential of 𝐺

at 𝑝, is nonsingular and hence that 𝐷𝐺𝑥 is nonsingular for 𝑥 near
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𝑝. The natural analogue of Newton’s Method is to define 𝑥𝑛+1 =

𝑥𝑛 −𝐷𝐺−1
𝑥𝑛

(𝐺(𝑥𝑛)), or in other words to consider the sequence of it-

erates of the map 𝐹 : 𝑁𝛿(𝑝) → R𝑛 given by 𝐹 (𝑥) = 𝑥−𝐷𝐺−1
𝑥 (𝐺(𝑥)).

Again it is clear that a fixed point of 𝐹 is a zero of 𝐺, and an argument

analogous to the one-dimensional case shows that for 𝛿 sufficiently

small 𝐹 : 𝑁𝛿(𝑝) → 𝑁𝛿(𝑝) is a contraction.

B.3. The Inverse Function Theorem

Let 𝑉 and 𝑊 be orthogonal vector spaces and 𝑔 : 𝑉 → 𝑊 a 𝐶𝑘 map,

𝑘 > 0. Suppose that for some 𝑣0 in 𝑉 the differential 𝐷𝑔𝑣0 of 𝑔 at

𝑣0 is a linear isomorphism of 𝑉 with 𝑊 . Then the Inverse Function

Theorem says that 𝑔 maps a neighborhood of 𝑣0 in 𝑉 one-to-one onto

a neighborhood 𝑈 of 𝑔(𝑣0) in 𝑊 and that the inverse map from 𝑈

into 𝑉 is also 𝐶𝑘.

It is easy to reduce to the case that 𝑣0 and 𝑔(𝑣0) are the respective

origins of 𝑉 and 𝑊 , by replacing 𝑔 by 𝑣 �→ 𝑔(𝑣+ 𝑣0)− 𝑔(𝑣0). We can

then further reduce to the case that 𝑊 = 𝑉 and 𝐷𝑔0 is the identity

mapping 𝐼 of 𝑉 by replacing this new 𝑔 by (𝐷𝑔0)
−1 ∘ 𝑔.

Given 𝑦 in 𝑉 , define 𝑓 = 𝑓𝑦 : 𝑉 → 𝑉 by 𝑓(𝑣) = 𝑣 − 𝑔(𝑣) + 𝑦.

Note that a solution of the equation 𝑔(𝑥) = 𝑦 is the same thing as a

fixed point of 𝑓 . We will show that if 𝛿 is sufficiently small, then 𝑓

restricted to

𝑋 = 𝑁𝛿 = {𝑣 ∈ 𝑉 ∣ ∥𝑣∥ ≤ 𝛿}
is a contraction mapping of 𝑁𝛿 to itself provided ∥𝑦∥ < 𝛿/2. By the

Banach Contraction Principle it then follows that 𝑔 maps 𝑁𝛿 one-to-

one into 𝑉 and that the image covers the neighborhood of the origin

𝑈 = {𝑣 ∈ 𝑉 ∣ ∥𝑣∥ < 𝛿/2}. This proves the Inverse Function Theorem

except for the fact that the inverse mapping of 𝑈 into 𝑉 is 𝐶𝑘, which

we will not prove.

The first thing to notice is that since 𝐷𝑔0 = 𝐼, 𝐷𝑓0 = 0 and

hence, by the continuity of 𝐷𝑓 , ∥𝐷𝑓𝑣∥ < 1/2 for 𝑣 in 𝑁𝛿 provided

𝛿 is sufficiently small. Since 𝑁𝛿 is convex, by a remark above, this

proves that 1/2 is a Lipschitz bound for 𝑓 in 𝑁𝛿 and in particular

that 𝑓 restricted to 𝑁𝛿 is a contraction. Thus it only remains to show

that 𝑓 maps 𝑁𝛿 into itself provided ∥𝑦∥ < 𝛿/2. That is, we must
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show that if ∥𝑥∥ ≤ 𝛿, then also ∥𝑓(𝑥)∥ ≤ 𝛿. But since 𝑓(0) = 𝑦,

∥𝑓(𝑥)∥ ≤ ∥𝑓(𝑥)− 𝑓(0)∥+ ∥𝑓(0)∥
≤ 1

2
∥𝑥∥+ ∥𝑦∥

≤ 𝛿/2 + 𝛿/2 ≤ 𝛿.

⊳Exercise B–3. The first (and main) step in proving that the in-

verse function ℎ : 𝑈 → 𝑉 is 𝐶𝑘 is to prove that ℎ is Lipschitz. That is,

we want to find a 𝐾 > 0 so that given 𝑦1 and 𝑦2 with ∥𝑦𝑖∥ < 𝛿/2 and

𝑥1 and 𝑥2 with ∥𝑥𝑖∥ < 𝛿, if ℎ(𝑦𝑖) = 𝑥𝑖, then ∥𝑥1 − 𝑥2∥ ≤ 𝐾 ∥𝑦1 − 𝑦2∥.
Prove this with 𝐾 = 2, using the facts that ℎ(𝑦𝑖) = 𝑥𝑖 is equivalent

to 𝑓𝑦𝑖
(𝑥𝑖) = 𝑥𝑖 and 1/2 is a Lipschitz constant for ℎ = 𝐼 − 𝑔.
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Let 𝑉 : R𝑛 ×R → R𝑛 be a 𝐶1 time-dependent vector field on R𝑛.

In the following 𝐼 = [𝑎, 𝑏] will be a closed interval that contains 𝑡0
and we will denote by 𝐶(𝐼,R𝑛) the vector space of continuous maps

𝜎 : 𝐼 → R𝑛 and define a distance function on 𝐶(𝐼,R𝑛) by

𝜌(𝜎1, 𝜎2) = max
𝑡∈𝐼

∥𝜎1(𝑡)− 𝜎2(𝑡)∥ .

It is not hard to show that 𝐶(𝐼,R𝑛) is a complete metric space.

In fact, this just amounts to the theorem that a uniform limit of

continuous functions is continuous.

Define for each 𝑣0 inR
𝑛 a map 𝐹 = 𝐹𝑉,𝑣0 : 𝐶(𝐼,R𝑛) → 𝐶(𝐼,R𝑛)

by 𝐹 (𝜎)(𝑡) := 𝑣0 +
∫ 𝑡

𝑡0
𝑉 (𝜎(𝑠), 𝑠) 𝑑𝑠. The Fundamental Theorem of

Calculus gives 𝑑
𝑑𝑡 (𝐹 (𝜎)(𝑡)) = 𝑉 (𝜎(𝑡), 𝑡), and clearly 𝐹 (𝜎)(𝑡0) = 𝑣0. It

follows that if 𝜎 is a fixed point of 𝐹 , then it is a solution of the ODE

𝜎′(𝑡) = 𝑉 (𝜎(𝑡), 𝑡) with initial condition 𝑣0, and the converse is equally

obvious. Thus it is natural to try to find a solution of this differential

equation with initial condition 𝑣0 by starting with the constant path

𝜎0(𝑡) ≡ 𝑣0 and applying successive approximations using the function

𝐹 . We will now see that this idea works and leads to the following

result, called the Local Existence and Uniqueness Theorem for 𝐶1

ODE.
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B.4.1. Theorem. Let 𝑉 : R𝑛×R→ R𝑛 be a 𝐶1 time-dependent

vector field on R𝑛, 𝑝 ∈ R𝑛, and 𝑡0 ∈ R. There are positive constants
𝜖 and 𝛿 depending on 𝑉 , 𝑝, and 𝑡0 such that if 𝐼 = [𝑡0 − 𝛿, 𝑡0 + 𝛿],

then for each 𝑣0 ∈ 𝑉 with ∥𝑣0 − 𝑝∥ < 𝜖 the differential equation

𝜎′(𝑡) = 𝑉 (𝜎(𝑡), 𝑡) has a unique solution 𝜎 : 𝐼 → R𝑛 with 𝜎(𝑡0) = 𝑣0.

Proof. If 𝜖 > 0, then, using the technique explained earlier, we can

find a Lipschitz constant 𝑀 for 𝑉 restricted to the set of (𝑥, 𝑡) ∈
R𝑛 × R such that ∥𝑥− 𝑝∥ ≤ 2𝜖 and ∣𝑡 − 𝑡0∣ ≤ 𝜖. Let 𝐵 be the

maximum value of 𝐹 (𝑥, 𝑡) on this same set, and choose 𝛿 > 0 so that

𝐾 = 𝑀𝛿 < 1 and 𝐵𝛿 < 𝜖, and define 𝑋 to be the set of 𝜎 in 𝐶(𝐼, 𝑉 )

such that ∥𝜎(𝑡)− 𝑝∥ ≤ 2𝜖 for all ∣𝑡∣ ≤ 𝛿. It is easy to see that 𝑋 is

closed in 𝐶(𝐼, 𝑉 ) and hence a complete metric space. The theorem

will follow from the Banach Contraction Principle if we can show that

for ∥𝑣0∥ < 𝜖, 𝐹𝑉,𝑣0 maps 𝑋 into itself and has 𝐾 as a Lipschitz bound.

If 𝜎 ∈ 𝑋, then ∥𝐹 (𝜎)(𝑡)− 𝑝∥ ≤ ∥𝑣0 − 𝑝∥ + ∫ 𝑡

0
∥𝑉 (𝜎(𝑠), 𝑠)∥ 𝑑𝑠 ≤

𝜖 + 𝛿𝐵 ≤ 2𝜖, so 𝐹 maps 𝑋 to itself. And if 𝜎1, 𝜎2 ∈ 𝑋, then

∥𝑉 (𝜎1(𝑡), 𝑡)− 𝑉 (𝜎2(𝑡), 𝑡)∥ ≤ 𝑀 ∥𝜎1(𝑡)− 𝜎2(𝑡)∥, so

∥𝐹 (𝜎1)(𝑡)− 𝐹 (𝜎2)(𝑡)∥ ≤
∫ 𝑡

0

∥𝑉 (𝜎1(𝑠), 𝑠)− 𝑉 (𝜎2(𝑠), 𝑠)∥ 𝑑𝑠

≤
∫ 𝑡

0

𝑀 ∥𝜎1(𝑠)− 𝜎2(𝑠)∥ 𝑑𝑠

≤
∫ 𝑡

0

𝑀𝜌(𝜎1, 𝜎2) 𝑑𝑠

≤ 𝛿𝑀𝜌(𝜎1, 𝜎2) ≤ 𝐾𝜌(𝜎1, 𝜎2)

and it follows that 𝜌(𝐹 (𝜎1), 𝐹 (𝜎2)) ≤ 𝐾𝜌(𝜎1, 𝜎2).




