
Appendix H

Runge-Kutta Methods

In this appendix we will analyze the conditions on the coefficients of

an explicit Runge-Kutta Method that are necessary and sufficient to

guarantee convergence with accuracy of order 𝑃 . In particular, we

will establish the connection between these conditions and the set of

rooted trees with no more than 𝑃 nodes. As a consequence, we will

be able to show that there are 𝑟-stage methods of order 𝑟 for 𝑟 ≤ 4

but not for 𝑟 > 4.

We begin by briefly considering more general one-step methods,

𝑦𝑛+1 = 𝐹 (𝑡𝑛, 𝑦𝑛, 𝑓, ℎ), for approximating solutions of the scalar ODE

𝑦′ = 𝑓(𝑡, 𝑦(𝑡)).

The local truncation error at 𝑡𝑛 is the quantity 𝜖𝑛 defined by

𝑦(𝑡𝑛+1) := 𝐹 (𝑡𝑛, 𝑦(𝑡𝑛), 𝑓, ℎ) + 𝜖𝑛.

From our discussion following the convergence analysis of Euler’s

Method in the body of the text, we can show that a 0-stable one-step

method will converge to a solution of the ODE 𝑦 ∈ 𝐶𝑃+1[𝑡𝑜, 𝑡𝑜 + 𝑇 ]

with global order of accuracy 𝑃 if ∣𝜖𝑛∣ ≤ 𝐶ℎ𝑃+1 for some 𝐶 > 0

depending only on max𝑡∈(𝑡𝑜,𝑡𝑜+𝑇 ) ∣𝑦(𝑃+1)(𝑡)∣.
One approach to constructing methods satisfying such an esti-

mate is to define them using Taylor’s Theorem with Remainder by

letting 𝐹 (𝑡𝑛, 𝑦𝑛, 𝑓, ℎ) =
∑𝑃

𝑝=0 𝑦
(𝑝)(𝑡𝑛)/𝑝! ℎ

𝑝 be the Taylor polyno-

mial of degree 𝑝 for 𝑦(𝑡) centered at 𝑡𝑛 and evaluated at 𝑡𝑛+1. To

implement this idea, we must be able to express 𝑦(𝑘)(𝑡𝑛) in terms

of 𝑓 and its derivatives evaluated at (𝑡𝑛, 𝑦𝑛). The resulting one-step

methods are known as Taylor Methods. Taylor Methods are an option

263



264 H. Runge-Kutta Methods

if the vector field that defines the ODE is given in a form that can be

differentiated symbolically, which is not always the case.

To demonstrate how this would be carried out, and for later use,

we examine the expressions for the first few derivatives of 𝑦 in terms

of 𝑓 and its derivatives. We ignore the differential equation at first

and differentiate 𝑔(𝑡) = 𝑓(𝑡, 𝑦(𝑡)) and use multi-index notation for

mixed partial derivatives,

𝑓𝑘,𝑙 = ∂𝑘,𝑙𝑓(𝑡, 𝑦) =
∂𝑘+𝑙𝑓

∂𝑡𝑘∂𝑦𝑙
.

In this form, we can distinguish terms arising from differentiating 𝑓

from those that arise by differentiating factors of 𝑦 coming from the

chain rule—terms that we will eventually also write in terms of 𝑓 .

Because of equality of mixed partial derivatives, these terms exhibit

a binomial pattern,

𝑦′ = 𝑓,

𝑦′′ = 𝑓1,0 + 𝑓𝑓0,1,

𝑦′′′ = [𝑓2,0 + 2𝑓𝑓1,1 + 𝑓2𝑓0,2] + [(𝑓1,0 + 𝑓𝑓0,1)𝑓0,1].

(H.1)

Even when this procedure is possible, by hand or with automatic

symbolic differentiation, the number of terms required to carry the ex-

pansion to high order can yield diminishing returns with the growing

cost of evaluation.

An alternate approach originally proposed and developed by

Runge and Kutta only requires evaluation of 𝑓 at arbitrary (𝑡, 𝑦) val-

ues to match the terms of Taylor polynomial above to order 𝑝. Runge-

Kutta Methods approximate (y(𝑡𝑛+1) − y(𝑡𝑛))/ℎ using a weighted

average of samples of the vector field 𝑓(𝑡, 𝑦) that defines an ODE.

For the method to be explicit, locations of the samples must be cho-

sen based upon information obtained in previous samples. Because of

this, the general form of an explicit one-stage Runge-Kutta Method is

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝛾0𝑓(𝑡𝑛, 𝑦𝑛). For the right-hand side to match the first-

order terms of the Taylor expansion above, we must have 𝛾0 = 1. This

tells us that Euler’s Method is the unique explicit one-stage Runge-

Kutta Method that is convergent. No higher-order terms occur when

a one-stage method is used.
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The general form of an explicit two-stage Runge-Kutta Method

is
𝑦′𝑛,1 = 𝑓(𝑡𝑛, 𝑦𝑛),

𝑦′𝑛,2 = 𝑓(𝑡𝑛 + 𝛽21ℎ, 𝑦𝑛 + ℎ𝛽21𝑦
′
𝑛,1),

𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝛾1𝑦
′
𝑛,1 + 𝛾2𝑦

′
𝑛,2).

(H.2)

Two of the example methods in the text fit this pattern, the midpoint

method (𝛽12 = 1/2, 𝛾1 = 0, 𝛾2 = 1) and Heun’s Method (𝛽12 =

1, 𝛾1 = 𝛾2 = 1/2). Both solved the second-order accuracy model

problem exactly and also appeared to converge to the solution of the

absolute stability model problem with second-order accuracy.

To estimate the local truncation error of these methods, we per-

form Taylor expansions of the terms of the general explicit 2-stage

Runge-Kutta Methods. Substituting 𝑦′𝑛,1 in the definition of 𝑦′𝑛,2,

𝑦′𝑛,2 = 𝑓(𝑡𝑛 + 𝛽21ℎ, 𝑦𝑛 + ℎ𝛽21𝑓).

Then by Taylor expanding in powers of the perturbations (to first

order to obtain ℎ𝑦′ terms to second order),

𝑦′𝑛,2 = 𝑓 + 𝛽21ℎ(𝑓
1,0 + 𝑓𝑓0,1) +𝑂(ℎ2).

When this is inserted in the expression for 𝑦𝑛+1, we find

𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝛾1 + 𝛾2)𝑓 +
ℎ2

2
2𝛾2𝛽21(𝑓

1,0 + 𝑓𝑓0,1) +𝑂(ℎ3).

Comparing this with (H.1), the conditions for this expansion to match

the first two terms of the Taylor series

𝑦(𝑡𝑛+1) = 𝑦(𝑡𝑛) + ℎ𝑦′𝑛 +
ℎ2

2
𝑦′′𝑛 +𝑂(ℎ3)

are
𝛾1 + 𝛾2 = 1,

2𝛾2𝛽21 = 1.

We may use 𝛾2 to parametrize a family, 𝛾1 = 1 − 𝛾2, 𝛽21 = 1/(2𝛾2),

of solutions of these equations. It is straightforward to check that the

midpoint method and Heun’s Method satisfy these conditions.
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The parameters of a Runge-Kutta Method are often displayed in

the form of a so-called Butcher tableau:

0

𝛼2 𝛽21

...
...

. . .

𝛼𝑟 𝛽𝑟1 ⋅ ⋅ ⋅ 𝛽𝑟(𝑟−1)

𝛾1 𝛾2 ⋅ ⋅ ⋅ 𝛾𝑟

The Butcher tableau for the midpoint method is

0

1
2

1
2

0 1

The modified trapezoidal method is displayed in this format as

0

1 1

1
2

1
2

If we expanded 𝑦′𝑛,2 to higher order, we would discover that three

parameters do not provide enough freedom to obtain a method of

order 3. In order to satisfy the two additional ℎ3 conditions appearing

in square brackets in the expression (H.1) for 𝑦′′′, another stage is

needed.

The form of an explicit Runge-Kutta Method with 𝑟 = 3 stages

is
𝑦′𝑛,1 = 𝑓(𝑡𝑛, 𝑦𝑛),

𝑦′𝑛,2 = 𝑓(𝑡𝑛 + 𝛽21ℎ, 𝑦𝑛 + ℎ𝛽21𝑦
′
𝑛,1),

𝑦′𝑛,3 = 𝑓(𝑡𝑛 + (𝛽31 + 𝛽32)ℎ, 𝑦𝑛 + ℎ(𝛽31𝑦
′
𝑛,1 + 𝛽32𝑦

′
𝑛,2)),

𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝛾1𝑦
′
𝑛,1 + 𝛾2𝑦

′
𝑛,2 + 𝛾3𝑦

′
𝑛,3).
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The coefficient of ℎ4

4! in the Taylor expansion of 𝑦(𝑡 + ℎ) in terms of

𝑓 and its derivatives is

𝑦(4) = [𝑓3,0 + 3𝑓𝑓2,1 + 3𝑓2𝑓1,2 + 𝑓3𝑓0,3]

+ [3(𝑓1,0 + 𝑓𝑓0,1)(𝑓1,1 + 𝑓𝑓0,2)]

+ [(𝑓2,0 + 2𝑓𝑓1,1 + 𝑓2𝑓0,2 + (𝑓1,0 + 𝑓𝑓0,1)𝑓0,1)𝑓0,1].

It clearly becomes worthwhile to find a framework to simplify the

development and comparison of the Taylor and Runge-Kutta sides

of these expansions to higher orders. The autonomous scalar case

is exceptional, as can be seen by setting all 𝑡-derivatives to zero in

the expressions above. For greater generality, we shift our setting

and notation and now consider an R𝐷 vector-valued f(y) and y(𝑡)

that is a solution of y′ = f(y). The nonautonomous case can be put

into this form using the standard device of replacing 𝑡 by additional

dependent variables 𝑦𝐷+1 satisfying 𝑦′𝐷+1 = 1. In this setting, the

general 𝑟-stage explicit Runge-Kutta Method takes the form

y𝑛+1 = y𝑛 + ℎ

𝑟∑
𝑖=1

𝛾𝑖y
′
𝑛,𝑖, (H.3)

where

y′
𝑛,𝑖 = f(y𝑛,𝑖), with y𝑛,𝑖 = y𝑛 + ℎ

𝑖−1∑
𝑗=1

𝛽𝑖,𝑗y
′
𝑛,𝑗 . (H.4)

An elegant formalism for organizing, visualizing, and understand-

ing both the Taylor expansion of the solution y(𝑡𝑛+ℎ) and the Runge-

Kutta expansion of y𝑛+1 obtained by Taylor expanding the terms in

(H.3) and (H.4) has been developed and advocated by Butcher [BJ],

following on the work of Gill [GS] and Merson [MRH]. This approach

associates terms in both expansions with rooted trees. To motivate

it, we begin by reviewing the formal Taylor expansion to degree 5 for

a function y(𝑡) : R → R𝑛 satisfying y′ = f(y), where f is a smooth

function from R𝑛 to R𝑛,

y(𝑡+ ℎ) = y(𝑡) + y′(𝑡)ℎ+ y′′(𝑡)
ℎ2

2!
+ ⋅ ⋅ ⋅+ y(𝑘)(𝑡)

ℎ𝑘

𝑘!
+ ⋅ ⋅ ⋅ ,
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and then give the representation of its terms using rooted trees. We

wish to represent the derivatives y(𝑘)(𝑡) in terms of f and its deriva-

tives. Here, in the column on the left, we list successive derivatives

of the function g(𝑡) = f(y(𝑡)) where again at first we ignore the dif-

ferential equation:

g(𝑡) = f(y(𝑡)) = f , y′, 1,
g′(𝑡) = fyy

′, y′′, 1,
g′′(𝑡) = fyyy

′2 + fyy
′′, y′′′, 1 + 1 = 2,

g′′′(𝑡) = fyyyy
′3 + 3fyyy

′y′′ + fyy
′′′, y(4), 1 + 1 + 2 = 4,

g(4)(𝑡)= fyyyyy
′4 + 6fyyyy

′2y′′

+3fyyy
′′y′′

+4fyyy
′y′′′ + fyy

(4), y(5), 1 + 1 + 1 + 2 + 4 = 9.

In the column on the right, we list the correspondence between each

derivative of g and the next higher derivative of 𝑦. We also list the

number of terms that each row represents as a sum. The terms of

the sum refer recursively to terms from previous rows that appear

in subsequent rows and the numbers of terms they represent. Recall

that the 𝑘th derivative of f with respect to y is a symmetric 𝑘-linear

function from (R𝑛)𝑘 → R𝑛. For 𝑘 > 1, the symmetry is nontrivial

and decreases the number of its independent coefficients with respect

to a basis from 𝑛𝑘+1 accordingly. For example, when 𝑘 = 2 there are

𝑛(𝑛(𝑛+ 1))/2 independent components.

Next we expand the rows recursively to write the Taylor expan-

sion as a linear combination of elementary differentials. These are

multilinear operator compositions that express y(𝑘) in terms of f and

its derivatives evaluated at 𝑡. Since fy...y is an operator with 𝑘 ar-

guments, we will use a naturally related notation for lists that will

be familiar to those who have encountered the artificial intelligence

programming language LISP. For our purposes, a list begins with an

open parentheses and the first element, the 𝑘th partial derivative of 𝑓

with respect to 𝑦 for some 𝑘 ≥ 0, followed by 𝑘 sublists, then a close

parentheses. If a sublist has zero sublists, we omit its parentheses,

and we can close all open parentheses with a right square bracket.

(Our convention will be to do so when more than two are open.)
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The internal representation of such a list in a LISP interpreter is

in the form of a rooted tree data structure, the same algebraic struc-

ture that has been used to visualize and organize the terms of Taylor

and Runge-Kutta expansions and their relationship. This suggests

that LISP may be convenient for performing calculations involved in

the derivation and analysis of Runge-Kutta Methods. A rooted tree

is a set of nodes connected by edges oriented away from a distin-

guished node called the root, so it is a connected simple graph that

contains no cycles, i.e., a tree. Graphically, we represent the lists

associated with an elementary differential by a root node labeled by

fy...y (𝑘 partial derivatives) attached to 𝑘 subtrees corresponding to

those sublists. Lists with no sublists are leaves—terminal nodes with

no edges leaving them:

y′(𝑡) = (f) = f ,

y′′(𝑡) = (fy f),

y′′′(𝑡) = (fyy f f) + (fy (fy f)),

y(4)(𝑡) = (fyyy f f f) + 3(fyy(fy f) f) + (fy(fyy f f)) + (fy(fy(fy f ],

y(5)(𝑡) = (fyyyy f f f f) + 6(fyyy(fy f) f f) + 3(fyy(fy f)(fy f))

+ 4(fyy(fyy f f) f) + 4(fyy(fy(fy f)) f) + (fy(fyyy f f f))

+ 3(fy(fyy(fy f) f)) + (fy(fy(fyy f f ] + (fy(fy(fy(fy f ].

We implicitly evaluate f and its derivatives at y(𝑡). We will refer to

the 𝑙th term of the 𝑘th-order (row) formal Taylor expansion above as

𝑇 𝑘
𝑙 . Observe that each different term of a particular order arises from

terms of the previous order from the vector-valued Leibniz rule and

chain rule, through the addition of one derivative to each operator

factor (we consider arguments f as preceded by a 0th-order identity

operator) and adding a corresponding argument y′ = f . In terms of

rooted trees, this corresponds to the process of constructing all rooted

trees with 𝑘 nodes by attaching a new edge and leaf to each node (one

at a time) of each rooted tree with 𝑘−1 nodes. The coefficients in the

equations above represent the number of distinct ways each such tree

can be built in this manner. Instead of expanding existing trees with

new leaves, we will see that the new rooted trees that occur at the 𝑟th

stage of a Runge-Kutta expansion are built by joining any number of
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trees built at the (𝑟 − 1)st stage to a new root node. By considering

the multiplicities of ways the trees are built in both models and the

coefficients that arise from the Runge-Kutta weighting coefficients,

we will obtain the matching conditions that are necessary to achieve

a certain order of accuracy.

Below, we exhibit the rooted trees corresponding to each term

𝑇 𝑘
𝑙 in the Taylor expansion above, along with their associated coef-

ficients in that expansion. The coefficients in the numerators that

represent multiplicities of the various terms in the expansion can be

interpreted and determined directly in terms of the number of ways

the corresponding trees can be constructed by repeatedly attaching

an edge and leaf to any node of smaller trees, starting from an initial

root node. For example, the factor 3 associated with 𝑇 4
2 corresponds

to the fact that it can be obtained by attaching an edge and leaf to

either of the two leaves of 𝑇 3
1 or by attaching an edge and leaf to

the root node of 𝑇 3
2 . Similarly, the factor 6 associated with 𝑇 5

2 cor-

responds to the fact that it can be obtained either by attaching an

edge and leaf to any of the three leaves of 𝑇 4
1 or by attaching an edge

and leaf to the root node of 𝑇 4
2 that itself has multiplicity 3.

f
fy f

fyy
f

f
fy fy f

𝑇 1
1 : (f), 1

1!
𝑇 2
1 : (fy f), 1

2!
𝑇 3
1 : (fyy f f), 1

3!
𝑇 3
2 : (fy (fy f)), 1

3!

fyyy

f

f

f

fyy
fy f

f

fy fyy
f

f

𝑇 4
1 : (fyyy f f f), 1

4!
𝑇 4
2 : (fyy (fy f) f), 3

4!
𝑇 4
3 : (fy (fyy f f)), 1

4

fy fy fy f

fyyyy

f

f

f

f

fyyy

fy f

f

f

𝑇 4
4 : (fy (fy (fy f ], 1

4!
𝑇 5
1 : (fyyyy f f f f), 1

5!
𝑇 5
2 : (fyyy (fy f) f f), 6

5!
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fyy

fy f

fy f

fyy
fyy

f

f

f

fyy
fy fy f

f

𝑇 5
3 : (fyy (fy f)(fy f)), 3

5!
𝑇 5
4 : (fyy (fyy f f) f), 4

5!
𝑇 5
5 : (fyy (fy (fy f)) f), 4

5!

fy fyyy

f

f

f

fy fyy
fy f

f

𝑇 5
6 : (fy (fyyy f f f)), 1

5!
𝑇 5
7 : (fy (fyy (fy f) f)), 3

5!

fy fy fyy
f

f
fy fy fy fy f

𝑇 5
8 : (fy (fy (fyy f f ], 1

5!
𝑇 5
9 : (fy (fy (fy (fy f ], 1

5!

Below, we will perform Taylor expansions of the terms in the

Runge-Kutta samples (H.4) for 𝑟 = 4 stages through order ℎ3. When

we form their weighted sum (H.3), this yields terms up to order ℎ4.

These Runge-Kutta expansions very quickly become horrendous, but

when they are interpreted in terms of rooted trees, another surpris-

ingly simple pattern describing the terms present at each stage and

their coefficients quickly emerges, just as we saw for Taylor expansion

of y(𝑡+ℎ). Before we wade through the formulas, we preview the al-

gebraic and analytical basis for this pattern and its consequences for

determining the order of an 𝑟-stage Runge-Kutta Method. In (H.4)

we have used y𝑛,𝑖 to denote the arguments of the sample of f that

defines the y′
𝑛,𝑖. The first stage of any explicit Runge-Kutta Method

simply samples the vector field at the current time-step, y𝑛,1 = y𝑛.

Then for any method other than Euler’s Method, another stage sam-

ples f at y𝑛,2 = y𝑛+ℎ(𝛽21y
′
𝑛,1), and we can formally expand f(y𝑛,2)

about y𝑛 in a Taylor series of the form
∑∞

𝑙=0(
fy⋅⋅⋅y
𝑙! (ℎ𝛽21f)

𝑙). If a

third stage is used, it samples f at y𝑛,3 = y𝑛 + ℎ(𝛽31y
′
𝑛,1 + 𝛽32y

′
𝑛,2).

Expanding f(y𝑛,3) in powers of ℎ involves substituting the prior ex-

pansion of y′
𝑛,2, combining like terms with y′

𝑛,1 in the perturbation

of y𝑛 in the argument (here just f), and then expanding in powers
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of the resulting power series. The 𝑙th power of this series results in

terms of the form
fy⋅⋅⋅y
𝑙! operating on 𝑙-fold products of its terms. Any

𝑙 terms whose orders in ℎ sum to a particular order contribute to the

overall result at that order, much like the convolution of coefficients

that gives the coefficient of a certain order in a polynomial product.

Any subsequent stage can be expanded in the same manner. The

description of this process in terms of rooted trees is simply that new

trees are built by attaching any number of trees obtained at the prior

stage to a new root node. In the 𝑖th stage we expand the evalua-

tion of f at y𝑛,𝑖 = 𝑦 + ℎ(𝛽𝑖1y
′
𝑛,1 + ⋅ ⋅ ⋅+ 𝛽𝑖(𝑖−1)y

′
𝑛,𝑖−1). To do so, we

first collect like terms in the expansions we have already obtained for

y′
𝑛,1, . . . ,y

′
𝑛,𝑖−1 to obtain a single expansion y𝑛,𝑖 = y +

∑
(𝑇𝑚ℎ𝑚)𝑙.

This simply involves summing the parameters for the current stage

times the corresponding coefficients obtained at the previous stage.

Then the (
fy⋅⋅⋅y
𝑙! (

∑
𝑇𝑚ℎ𝑚)𝑙) term of the Taylor expansion of f(y𝑛,𝑖)

is comprised of terms of the form (fy⋅⋅⋅y 𝑇𝑖1 ⋅ ⋅ ⋅𝑇𝑖𝑚). This is repre-

sented as a rooted tree whose root node is attached to the 𝑚 trees

corresponding to the terms 𝑇𝑖1 , . . . , 𝑇𝑖𝑚 in the prior stage of the ex-

pansion. Now here is the expansion for 𝑟 = 4.

y′
𝑛,1 = f(y𝑛) = f ,

y′
𝑛,2 = f(y𝑛 + ℎ(𝛽21y

′
𝑛,1)) = f(y𝑛 + ℎ(𝛽21f))

= f + (fy (ℎ𝛽21f))

+ (
fyy
2!

(ℎ𝛽21f)
2) + (

fyyy
3!

(ℎ𝛽21f)
3) + ⋅ ⋅ ⋅

= f + ℎ𝛽21(fy f) +
ℎ2

2!
𝛽2
21(fyy f f) +

ℎ3

3!
𝛽3
21 (fyyy f f f) + ⋅ ⋅ ⋅ ,

y′
𝑛,3 = f(y𝑛 + ℎ(𝛽31y

′
𝑛,1 + 𝛽32y

′
𝑛,2))

= f(y𝑛 + ℎ(𝛽31 + 𝛽32)f

+ ℎ2𝛽32𝛽21(fy f) +
ℎ3

2!
𝛽32𝛽

2
21(fyy f f) + ⋅ ⋅ ⋅ )
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= f + (fy (ℎ(𝛽31 + 𝛽32)f

+ ℎ2𝛽32𝛽21(fy f) +
ℎ3

2!
𝛽32𝛽

2
21(fyy f f) + ⋅ ⋅ ⋅ ))

+ (
fyy
2!

(ℎ(𝛽31 + 𝛽32)f + ℎ2𝛽32𝛽21(fy f) + ⋅ ⋅ ⋅ )2)

+ (
fyyy
3!

(ℎ(𝛽31 + 𝛽32)f + ⋅ ⋅ ⋅ )3) + ⋅ ⋅ ⋅
= f + ℎ(𝛽31 + 𝛽32)(fy f) + ℎ2𝛽32𝛽21(fy (fy f))

+
ℎ3

2!
𝛽32𝛽

2
21(fy (fyy f f)) + ⋅ ⋅ ⋅

+
ℎ2

2!
(𝛽31 + 𝛽32)

2(fyy f f)

+
2ℎ3

2!
(𝛽31 + 𝛽32)𝛽32𝛽21(fyy (fy f) f)

+
ℎ3

3!
(𝛽31 + 𝛽32)

3(fyyy f f f) + ⋅ ⋅ ⋅ ,

y′
𝑛,4 = f(y𝑛 + ℎ(𝛽41y

′
𝑛,1 + 𝛽42y

′
𝑛,2 + 𝛽43y

′
𝑛,3))

= f(y𝑛+ℎ(𝛽41+𝛽42+𝛽43)f + ℎ2(𝛽42𝛽21 + 𝛽43(𝛽31 + 𝛽32))(fy f)

+
ℎ3

2!
(2𝛽43𝛽32𝛽21(fy (fy f))

+ (𝛽42𝛽
2
21 + 𝛽43(𝛽31 + 𝛽32)

2)(fyy f f)) + ⋅ ⋅ ⋅ )
= f + (fy(ℎ(𝛽41+𝛽42+𝛽43)f+ℎ2(𝛽42𝛽21+𝛽43(𝛽31+𝛽32))(fy f)

+
ℎ3

2!
(2𝛽43𝛽32𝛽21(fy (fy f))

+ (𝛽42𝛽
2
21 + 𝛽43(𝛽31 + 𝛽32)

2)(fyy f f)) + ⋅ ⋅ ⋅ ))

+ (
fyy
2!

(ℎ(𝛽41 + 𝛽42 + 𝛽43)f

+ ℎ2(𝛽42𝛽21 + 𝛽43(𝛽31 + 𝛽32))(fy f) + ⋅ ⋅ ⋅ ))2

+ (
fyyy
3!

(ℎ(𝛽41 + 𝛽42 + 𝛽43)f + ⋅ ⋅ ⋅ ))3 + ⋅ ⋅ ⋅
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= f + ℎ(𝛽41 + 𝛽42 + 𝛽43)(fy f)

+ ℎ2(𝛽42𝛽21 + 𝛽43(𝛽31 + 𝛽32))(fy (fy f))

+
ℎ3

2!
(2𝛽43𝛽32𝛽21(fy (fy (fy f)))

+ (𝛽42𝛽
2
21 + 𝛽43(𝛽31 + 𝛽32)

2)(fy (fyy f f) + ⋅ ⋅ ⋅ ))

+
ℎ2

2!
(𝛽41 + 𝛽42 + 𝛽43)

2(fyy f f)

+
2ℎ3

2!
(𝛽41+𝛽42+𝛽43)(𝛽42𝛽21+𝛽43(𝛽31+𝛽32))(fyy(fy f) f)+ ⋅ ⋅ ⋅

+
ℎ3

3!
((𝛽41 + 𝛽42 + 𝛽43)

3(fyyy f f f) + ⋅ ⋅ ⋅ ).

Below is a summary of the elementary differential terms that ap-

peared in the expansion, according to their order in ℎ. The notation

𝑅𝑖
𝑙,𝑚 identifies the order ℎ𝑖, the order 𝑙 of the leading derivative of f ,

and the index 𝑚 among such terms. Next to this is the 𝑇 𝑘
𝑗 of the cor-

responding term in the Taylor expansion, followed by the equation

of coefficients from the respective expansions. Recall the notation

𝛼𝑖 =
∑𝑖−1

𝑗=1 𝛽𝑖𝑗 for expressions that appear repeatedly in the expan-

sion.

ℎ𝑘,
Elementary 𝑅𝐾 coefficient

Differential 𝑅𝑖
𝑙,𝑚 𝑇 𝑘

𝑗 = 𝑇 coefficient

ℎ1(f) 𝑅1
1,1 𝑇 1

1 𝛾1 + 𝛾2 + 𝛾3 + 𝛾4 = 1
1!

ℎ2(fy f) 𝑅2
1,1 𝑇 2

1 𝛾2𝛼2 + 𝛾3𝛼3 + 𝛾4𝛼4 = 1
2!

ℎ3(fyy f f) 𝑅2
2,1 𝑇 3

1
1
2!
(𝛾2𝛼2

2 + 𝛾3𝛼2
3 + 𝛾4𝛼2

4) = 1
3!

ℎ3(fy (fy f)) 𝑅3
1,1 𝑇 3

2 𝛾3𝛽32𝛼2 + 𝛾4(𝛽42𝛼2 + 𝛽43𝛼3) = 1
3!

ℎ4(fyyy f f f) 𝑅2
3,1 𝑇 4

1
1
3!
(𝛾2𝛼3

2 + 𝛾3𝛼3
3 + 𝛾4𝛼3

4) = 1
4!

ℎ4(fy (fyy f f)) 𝑅3
1,2 𝑇 4

3
1
2!
(𝛾3𝛽32𝛼2

2 + 𝛾4(𝛽42𝛼2
2 + 𝛽43𝛼2

3)) = 1
4!

ℎ4(fyy (fy f) f) 𝑅3
2,1 𝑇 4

3 𝛾3𝛼3𝛽32𝛼2 + 𝛾4𝛼4(𝛽42𝛼2 + 𝛽43𝛼3) = 3
4!

ℎ4(fy (fy (fy f ] 𝑅4
1,1 𝑇 4

4 𝛾4𝛽43𝛽32𝛼2 = 1
4!

The rooted trees 𝑅𝑖
𝑙,𝑚 corresponding to elementary differentials

up to order 𝑘 = 4 are shown below in order of their occurrence in

stages 𝑖 = 1, . . . , 4 of the Runge-Kutta approximation. Within a
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stage, we have listed trees by the order 𝑙 of the 𝑙-fold product that

produces them, i.e., by how many previously existing trees are at-

tached to a new root node in order to construct the tree.

𝑖 𝑖 ⋅ 𝑖
⋅
⋅

𝑅1
1,1 :

∑
𝑖 𝛾𝑖 = 1 𝑅2

1,1 :
∑

𝛾𝑖𝛼𝑖 =
1
2 𝑅2

2,1 :
∑

𝛾𝑖𝛼
2
𝑖 =

1
3

𝑖

⋅
⋅
⋅ 𝑖 𝑗 ⋅ 𝑖 𝑗

⋅
⋅

𝑅2
3,1 :
∑

𝑖 𝛾𝑖𝛼
3
𝑖 =

1
3 𝑅3

1,1 :
∑∑

𝛾𝑖𝛽𝑖𝑗𝛼𝑗 =
1
6 𝑅3

1,2 :
∑∑

𝛾𝑖𝛽𝑖𝑗𝛼
2
𝑗 =

1
12

𝑖
𝑗 ⋅
⋅ 𝑖 𝑗 𝑘 ⋅

𝑅3
2,1 :

∑∑
𝛾𝑖𝛼𝑖𝛽𝑖𝑗𝛼𝑗 =

1
8 𝑅4

1,1 :
∑∑∑

𝛾𝑖𝛽𝑖𝑗𝛽𝑗𝑘𝛼𝑘 =
1
24

Just as for the first-order Taylor expansion of y(𝑡 + ℎ), there is

only one tree at the first stage of the Runge-Kutta expansion, the

tree corresponding to f itself. However, at the second stage, there is

already an infinite family of trees corresponding to the infinite series of

terms (fy⋅⋅⋅y f ⋅ ⋅ ⋅ f) with 𝑙 y’s and operands f for 𝑙 = 0, 1, . . . . So while

the third-order tree corresponding to (fyy f f) appears at the second

stage, the other third-order tree corresponding to (fy (fy f)) does

not. This tree only appears in the first-order term of the expansion

of this series at the third stage when (fy is added in front of existing

terms including (fy f), or in tree form, the tree corresponding to

(fy f) is attached to a new root node. Carrying this further, we

can see that the tree with 𝑟 nodes having depth 𝑟 − 1 corresponding

to the elementary differential of the form (fy (fy . . . (fy f ] does not

occur until the 𝑟th stage of a Runge-Kutta expansion. Note that the

tree corresponding to (fyy f f), and in fact every tree that occurs at

the second stage, also recurs as the first term in each order at every

subsequent stage.
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Conversely, since every tree with 𝑟 nodes arises by attaching some

number of trees with strictly fewer nodes to its root, every tree with

𝑟 nodes does occur by the 𝑟th stage. This shows that 𝑟 stages are

necessary for a Runge-Kutta expansion to match a Taylor expansion

to order 𝑟, because at least one term is missing with fewer stages. It

also shows that all of the terms necessary for matching are present at

the 𝑟th stage, but sufficiency depends upon the relation between the

number of parameters, 𝑟(𝑟+1)/2, that define an 𝑟 stage method and

the number of coefficient equations corresponding to the elementary

differential (or rooted tree) up to a given order. In particular, we have

seen that there is one parameter for one-stage methods and one tree

for first-order agreement, and one method, Euler’s Method, satisfies

the matching conditions. There are three parameters for two-stage

methods, and only two trees of order two or less, resulting in a one-

parameter family of explicit two-stage Runge-Kutta Methods of order

two. There are three more parameters for three-stage methods, and

with two more trees at order three with conditions to match, we

reach a two-parameter family of three-stage methods of order three.

With four more parameters for a four-stage method, but also four

additional trees with four nodes, there will again be a two-parameter

family of four-stage methods of order four. But since there are nine

rooted trees having five nodes, two free fourth-stage parameters plus

five new fifth-stage parameters are still deficient by two. Six stages

are required to achieve a fifth-order method.

The conditions for matching the Runge-Kutta and Taylor ex-

pansion terms involving an elementary differential can be obtained

directly from the structure of the corresponding rooted tree. For this

purpose, we relabel the nonleaf nodes with index symbols for summa-

tion. Note that the earlier labeling with y-derivatives of f was helpful

but not actually necessary to recover the elementary differential, and

the same holds here for recovering coefficients. The coefficients devel-

oped in successive stages arose from summing over the 𝛽 parameters

of the method times corresponding coefficients of previous elementary

differential terms. Therefore, each time we attach an existing node to

a new root node, we contribute a sum of the corresponding 𝛽 coeffi-

cients to the coefficient corresponding to the resulting tree. Each leaf
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node contributes 𝛼𝑖 = 𝛽𝑖𝑗 for the stage it represents and therefore

does not need to be indexed. Though the purposes are slightly differ-

ent, the form in which 𝛽 coefficients appear is the same as that of the

𝛾 coefficients. The 𝛽’s are used to construct evaluation points for f ,

𝑦′𝑛,𝑖 = f(y𝑛,𝑖), with y𝑛,𝑖 = y𝑛+𝛽𝑛,1y
′
𝑛,1+ ⋅ ⋅ ⋅+𝛽𝑛,𝑖y

′
𝑛,𝑖−1. When we

have obtained sufficiently many (i.e., 𝑟) of these evaluations, the 𝛾’s

are used to obtain y𝑛+1 = y𝑛 + 𝛾𝑛,1y
′
𝑛,1 + ⋅ ⋅ ⋅+ 𝛾𝑛,𝑟y

′
𝑛,𝑟. Because of

this, the form of the coefficient formula associated with a particular

tree is the same regardless of the number of stages of the method in

which it appears. In other words, the coefficient formulas and corre-

sponding matching conditions for a four-stage method reduce to those

for a three-stage method simply by eliminating all terms involving co-

efficients whose first index is ≥ 4. If we only retain terms involving

coefficients whose first index is ≤ 2, we recover the two conditions we

found for a two-stage method to be second-order.

The rooted trees corresponding to exactness of the solution of

the polynomial accuracy model problems 𝑦′ = (𝑡𝑃 )′ are the depth-

one trees with 𝑃 nodes, 𝑅2
𝑃−1,1 = 𝑇𝑃

1 , that occur at the second stage.

These are the only rooted trees of order 𝑃 ≤ 2. Therefore, exactness

on equations whose solutions are polynomials of degree 𝑃 is necessary

and sufficient for general 𝑃 th-order accuracy of an explicit Runge-

Kutta Method when 𝑃 ≤ 2. Even though these trees occur at the

second stage, for 𝑃 > 2, 𝑃 stages are required to match the Taylor

coefficient. The rooted trees corresponding to 𝑃 th-order accuracy for

the absolute stability model problem 𝑦′ = 𝜆𝑦 are the maximal depth

trees with 𝑃 nodes, 𝑅𝑃
1,1 = 𝑇𝑃

𝑃 , i.e., the trees with one edge leaving

every node except the leaf. For this problem, all derivatives of f(y)

beyond the first are zero. This tree does not occur until the 𝑃 th stage.

Therefore, 𝑃 stages are necessary for general 𝑃 th-order accuracy.

Below the trees representing eight elementary differentials of or-

der ≤ 4, we have collected the factors from the two sides of the match-

ing conditions in the table into one of the form 1/𝑑(𝑇 ). Here 𝑑(𝑇 )

arises as the ratio of the multiplicity of ways the tree can be con-

structed by addition of edges and leaves on the Taylor side and a

combination of 𝑙th-order expansion factorials and multinomial coeffi-

cients on the Runge-Kutta side. These factors can also be computed
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directly from their trees using the following simple algorithm. The

density of any leaf, a rooted tree of order one arising from evaluat-

ing f in the first stage, is 1. At every subsequent stage, at which we

attach one or more trees to a new root node, the density of the result-

ing trees is the product of the densities of the trees being attached,

times the order of the resulting tree. For example, the tree 𝑅3
2,1 is a

rooted tree with four nodes corresponding to the elementary differ-

ential (fyy (fy f) f). It is first obtained at the 𝑖 = 3rd stage of the

Runge-Kutta expansion in the 𝑙 = 2nd-order term of the expansion,

by joining the trees corresponding to (fy f) and f . The former has

density 1 ⋅ 2 and the latter has density 1, so since the resulting tree

has order 4, its density is 1 ⋅ 2 ⋅ 4 = 8.

For 𝑟 = 4 stages, the eight fourth-order matching conditions are

𝛾1 + 𝛾2 + 𝛾3 + 𝛾4 = 1, 𝛾2𝛼2 + 𝛾3𝛼3 + 𝛾4𝛼4 =
1
2 ,

𝛾2𝛼
2
2 + 𝛾3𝛼

2
3 + 𝛾4𝛼

2
4 =

1
3 , 𝛾3𝛽32𝛼2 + 𝛾4(𝛽42𝛼2 + 𝛽43𝛼3) =

1
6 ,

𝛾2𝛼
3
2 + 𝛾3𝛼

3
3 + 𝛾4𝛼

3
4 =

1
4 , 𝛾3𝛽32𝛼

2
2 + 𝛾4(𝛽42𝛼

2
2 + 𝛽43𝛼

2
3) =

1
12 ,

𝛾3𝛼3𝛽32𝛼2

+𝛾4𝛼4(𝛽42𝛼2 + 𝛽43𝛼3) =
1
8 , 𝛾4𝛽43𝛽32𝛼2 =

1
24 .

The recommended procedure for solving the equations is to choose

𝛼2, . . . , 𝛼𝑟 and then solve the 𝑟 equations,
∑𝑟

𝑖=1 𝛾𝑖𝛼
𝑘
𝑖 , 𝑘 = 0, . . . , 𝑟−

1, for 𝛾1, . . . , 𝛾𝑟. Next, solve for the 𝛽𝑖𝑗 that are determined by linear

equations. In this case, the fourth, sixth, and seventh equations above

allow us to solve for 𝛽32, 𝛽42, and 𝛽43. The classical fourth-order

Runge-Kutta Method corresponds to the solution obtained by setting

𝛼2 = 𝛼3 =
1
2 , 𝛼4 = 1, given in tableau form as

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

2
6

2
6

1
6

For the scalar ODE with 𝑓𝑦 = 0, i.e., 𝑦′ = 𝑓(𝑡), this method reduces

to the Simpson-parabolic quadrature method.
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Among the methods satisfying the matching equations of a given

order, optimal methods can be obtained by minimizing local trun-

cation error bounds. A well-known example of this is the two-stage

method of order 2 known as Ralston’s Method, given in tableau form

as

0

3
4

3
4

1
3

2
3

Pairs of closely related Runge-Kutta Methods can be used for au-

tomatic step-size control in the same manner that pairs of multistep

methods are used for error estimation and step-size modification. A

well-known example of this technique is the Runge-Kutta-Fehlberg

pair consisting of a five-stage and six-stage method of orders 4 and 5,

respectively. Further details on these and other topics, including spe-

cial cases for scalar, autonomous, and constant coefficient systems of

equations, methods based on extrapolation, methods to treat second-

and higher-order equations directly, etc., can be found in [BJ].

The region of absolute stability for an explicit 𝑟-stage method is

determined by one step of the method applied to the absolute stability

model problem, 𝑦′ = 𝜆𝑦. For 𝑟 ≤ 4, we know that the coefficients

can be chosen so that the method has order of accuracy 𝑃 = 4. In

this case the region of absolute stability is {𝑤 ∈ C ∣ ∣𝑝𝑟(𝑤)∣ ≤ 1}
where 𝑝𝑟(𝑧) =

∑𝑟
𝑘=0 𝑧

𝑘/𝑘!, the truncation to degree 𝑟 of the exact

exponential series solution of the model problem (Figure 5.14). For

𝑟 > 4, we must replace 𝑝𝑟 by some polynomial of degree ≤ 𝑟 that

depends on the specifics of the method.

Implicit Runge-Kutta Methods can be employed if larger stability

regions are required. See [IA1] for a discussion of these methods and

their relation to Gauss-Legendre quadrature and collocation methods.

Of particular relevance to the topic of this appendix are several pub-

lications on Runge-Kutta Methods for Hamiltonian systems. Explicit

symplectic Runge-Kutta Methods only exist for general Hamiltoni-

ans that are separable, but the implicit Gauss-Legendre Runge-Kutta

Methods are symplectic and they are optimal for general Hamiltoni-

ans. See [IA2], [SJM], [CS], [HLW], [YH], [CP].




