
Introduction

This book is about differential equations—a very big subject! It is

so extensive, in fact, that we could not hope to cover it completely

even in a book many times this size. So we will have to be selective.

In the first place, we will restrict our attention almost entirely to

equations of evolution. That is to say, we will be considering quanti-

ties q that depend on a “time” variable t, and we will be considering

mainly initial value problems. This is the problem of predicting the

value of such a quantity q at a time t1 from its value at some (usu-

ally earlier) “initial” time t0, assuming that we know the “law of

evolution” of q. The latter will always be a “differential equation”

that tells us how to compute the rate at which q is changing from a

knowledge of its current value. While we will concentrate mainly on

the easier case of an ordinary differential equation (ODE), where the

quantity q depends only on the time, we will on occasion consider

the partial differential equation (PDE) case, where q depends also on

other “spatial variables” x as well as the time t and where the partial

derivatives of q with respect to these spatial variables can enter into

the law determining its rate of change with respect to time.

Our principal goal will be to help you develop a good intuition

for equations of evolution and how they can be used to model a large

variety of time-dependent processes—in particular those that arise in

the study of classical mechanics. To this end we will stress various

metaphors that we hope will encourage you to get started thinking

creatively about differential equations and their solutions.

But wait! Just who is this “you” we are addressing? Every text-

book author has in mind at least a rough image of some prototypical
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2 Introduction

student for whom he is writing, and since the assumed background

and abilities of this model student are sure to have an important in-

fluence on how the book gets written, it is only fair that we give you

some idea of our own preconceptions about you.

We are assuming that, at a mimimum, the usual reader of this

book will have completed the equivalent of two years of undergradu-

ate mathematics in a U.S. college or university and, in particular, will

have had a solid introduction to linear algebra and to multi-variable

(aka “advanced”) calculus. But in all honesty, we have in mind some

other hoped-for qualities in our reader, principally that he or she is

accustomed to and enjoys seeing mathematics presented conceptu-

ally and not as a collection of cookbook methods for solving standard

exercises. And finally we hope our readers enjoy working out mathe-

matical details on their own. We will give frequent exercises (usually

with liberal hints) that ask the student to fill in some details of a

proof or derive a corollary.

A related question is how we expect this book to be used. We

would of course be delighted to hear that it has been adopted as the

assigned text for many junior and senior level courses in differential

equations (and perhaps not surprisingly we would be happy using it

ourselves in teaching such a course). But we realize that the book

we have written diverges in many ways from the current “standard

model” of an ODE text, so it is our real hope and expectation that

many students, particularly those of the sort described above, will

find it a challenging but helpful source from which to learn about

ODEs, either on their own or as a supplement to a more standard

assigned text while taking an ODE course.

We should mention here—and explain—a somewhat unusual fea-

ture of our exposition. The book consists of two parts that we will

refer to as “text” and “appendices”. The text is made up of five chap-

ters that together contain about two-thirds of the material, while the

appendices consist of ten shorter mini-chapters. Our aim was to make

the text relatively easy reading by relegating the more difficult and

technical material to the appendices. A reader should be able to get

a quick overview of the subject matter of one or more chapters by

just reading the text and ignoring the references to material in the
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appendices. Later, when ready to go deeper or to check an omitted

proof, a reading of the relevant appendices should satisfy the reader’s

hunger for more detail.

Finally we would like to discuss “visual aids”—that is, the various

kinds of diagrams and pictures that make it easier for a student to

internalize a complicated mathematical concept upon meeting it for

the first time. Both of the authors have been very actively involved

with the development of software tools for creating such mathemati-

cal visualizations and with investigating techniques for using them to

enhance the teaching and learning of mathematics, and paradoxically

that has made it difficult for us to choose appropriate figures for our

text. Indeed, recent advances in technology, in particular the explo-

sive development of the Internet and in particular of the World Wide

Web, have not only made it easy to provide visual material online,

but moreover the expressiveness possible using the interactive and an-

imated multimedia tools available in the virtual world of the Internet

far surpasses that of the classic static diagrams that have traditionally

been used in printed texts. As a result we at first considered omit-

ting diagrams entirely from this text, but in the end we decided on a

dual approach. We have used traditional diagrams in the text where

we felt that they would be useful, and in addition we have placed a

much richer assortment of visual material online to accompany the

text. Our publisher, the American Mathematical Society, has agreed

to set aside a permanent area on its own website to be devoted to

this book, and throughout the text you will find references to this

area that we will refer to as the “Web Companion”.1 Here, organized

by chapter and section, you will find visualizations that go far be-

yond anything we could hope to put in the pages of a book—static

diagrams, certainly, but in addition Flash animations, Java applets,

QuickTime movies, Mathematica, Matlab, Maple Notebooks, other

interactive learning aids, and also links to other websites that contain

material we believe will help and speed your understanding. And not

only does this approach allow us to make much more sophisticated

visualizations available, but it also will permit us to add new and

improved material as it becomes available.

1Its URL is http://www.ams.org/bookpages/stml-51.





Chapter 1

Differential Equations
and Their Solutions

1.1. First-Order ODE: Existence and Uniqueness

What does the following sentence mean, and what image should it

cause you to form in your mind?

Let V : Rn × R → Rn be a time-dependent vector

field, and let x(t) be a solution of the differential

equation dx
dt = V (x, t) satisfying the initial condition

x(t0) = x0.

Let us consider a seemingly very different question. Suppose you

know the wind velocity at every point of space and at all instants of

time. A puff of smoke drifts by, and at a certain moment you note the

precise location of a particular smoke particle. Can you then predict

where that particle will be at all future times?

We will see that when this somewhat vague question is trans-

lated appropriately into precise mathematical concepts, it leads to

the above “differential equation”, and that the answer to our predic-

tion question translates to the central existence and uniqueness result

in the theory of differential equations. (The answer, by the way, turns

out to be a qualified “yes”, with several important caveats.)

We interpret “space” to mean the n-dimensional real number

space Rn, so a “point of space” is just an n-tuple x = (x1, . . . , xn) of

real numbers. If you feel more comfortable thinking n = 3, that’s fine
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6 1. Differential Equations and Their Solutions

for the moment, but mathematically it makes no difference, and as we

shall see later, even when working with real-world, three-dimensional

problems, it is often important to make use of higher-dimensional

spaces.

On the other hand, an “instant of time” will always be repre-

sented by a single real number t. (There are mathematical situations

that do require multi-dimensional time, but we shall not meet them

here.) Thus, knowing the wind velocity at every point of space and

at all instants of time means that we have a function V that as-

sociates to each (x, t) in Rn × R a vector V (x, t) in Rn, the wind

velocity at x at time t. We will denote the n components of V (x, t)

by V1(x, t), . . . , Vn(x, t). (We will always assume that V is at least

continuous and usually that it is even continuously differentiable.)

How should we model the path taken by a smoke particle? An

ideal smoke particle is characterized by the fact that it “goes with the

flow”, i.e., it is carried along by the wind. That means that if x(t) =

(x1(t), . . . , xn(t)) is its location at a time t, then its velocity at time

t will be the wind velocity at that point and time, namely V (x(t), t).

But the velocity of the particle at time t is x′(t) = (x′
1(t), . . . , x

′
n(t)),

where primes denote differentiation with respect to t, i.e., x′ = dx
dt =

(dx1

dt , . . . ,
dxn

dt ).

So the path of a smoke particle will be a differentiable curve

x(t) in Rn that satisfies the differential equation x′(t) = V (x(t), t),

or dx
dt = V (x, t). If we write this in components, it reads dxi

dt =

Vi(x1(t), . . . , xn(t), t), for i = 1, . . . , n, and for this reason it is often

called a system of differential equations. Finally, if at a time t0 we

observe that the smoke particle is at the point x0 in Rn, then the

“initial condition” x(t0) = x0 is also satisfied.

The page devoted to Chapter 1 in the Web Companion contains

a QuickTime movie showing the wind field of a time-dependent two-

dimensional system and the path traced out by a “smoke particle”.

Figure 1.1 shows the direction field and a few such solution curves for

an interesting and important one-dimensional ODE called the logistic

equation.
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Figure 1.1. The logistic equation.

For the logistic equation, the velocity field is given by V (x, t) =

cx(A−x). The vertical x-axis represents the size of some quantity, and

the horizontal axis is the time, t. This equation models the growth

of x in the presence of environmental constraints. The constant A is

called the carrying capacity, and c(A− x) is the “growth rate”. Note

that the growth rate approaches zero as x approaches the carrying

capacity. This equation is discussed in more detail in Section 2.7 on

ecological models.

The combination of a differential equation, dx
dt = V (x, t), and

an initial condition, x(t0) = x0, is called an “initial value problem”

(IVP), so the above informal prediction question for smoke particles

can now be translated into a precise mathematical question: “What
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can we say about the existence and uniqueness of solutions to such

initial value problems?”

We will discuss this central question in detail below, along with

important related questions such as how solutions of an IVP change

as we vary the initial condition and the vector field. In order not to

over-burden the exposition, we will leave many details of proofs to

be worked out by the reader in exercises (with liberal hints). Fully

detailed proofs can be found in the appendices and various references.

First let us make precise the definition of a solution of the above

initial value problem: it is a differentiable map x of some open interval

I containing t0 into Rn such that x(t0) = x0 and x′(t) = V (x(t), t)

for all t in I.

We first consider uniqueness. The vector field V : Rn ×R → Rn

is called continuously differentiable (or C1) if all of its components

Vi(x1, . . . , xn, t) have continuous first partial derivatives with respect

to x1, . . . , xn, t, and more generally V is called Ck if all partial deriva-

tives of order k or less of its components exist and are continuous.

1.1.1. Uniqueness Theorem. Let V : Rn × R → Rn be a

C1 time-dependent vector field on Rn and let x1(t) and x2(t) be

two solutions of the differential equation dx
dt = V (x, t) defined on the

same interval I = (a, b) and satisfying the same initial condition, i.e.,

x1(t0) = x2(t0) for some t0 ∈ I. Then in fact x1(t) = x2(t) for all

t ∈ I.

�Exercise 1–1. Show that continuity of V is not sufficient to guar-

antee uniqueness for an IVP. Hint: The classic example (with n = 1)

is the initial value problem dx
dt =

√
x and x(0) = 0. Show that for

each T > 0, we get a distinct solution x
T
(t) of this IVP by defining

x
T
(t) = 0 for t < T and x

T
(t) = 1

4 (t− T )2 for t ≥ T .

But what about existence?

1.1.2. Local Existence Theorem. Let V : Rn ×R → Rn be a

C1 time-dependent vector field on Rn. Given p0 ∈ Rn and t0 ∈ R,

there is a neighborhood O of p0 and an ε > 0 such that for every p
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in O there is a solution xp : (t0 − ε, t0 + ε) → Rn of the differential

equation dx
dt = V (x, t) satisfying the initial condition xp(t0) = p.

The proofs of existence and uniqueness have been greatly simpli-

fied over time, but understanding the details still requires nontrivial

effort. Here we will sketch some of the most important ideas and con-

structs that go into the complete proof, but in order not to interrupt

the flow of our exposition, we will defer the details to Appendix B.

But even if you choose not to study these proofs now, we urge you to

do so at some later time. We think you will find that these proofs are

so elegant, and the ideas and constructions that enter into them are

of such interest in their own right, that studying them is well worth

the time and effort it requires.

We begin with a simple but very important reformulation of

the ODE initial value problem x′(s) = V (x(s), s) and x(t0) = x0.

Namely, if we integrate both sides of the first of these equations from

t0 to t, we find that x(t) = x0 +
∫ t

t0
V (x(s), s) ds, and we refer to this

equation as the integral form of the initial value problem. Note that

by substituting t = t0 in the integral form and by differentiating it,

we get back the two original equations, so the integral form and the

ODE form are equivalent. This suggests that we make the following

definition.

1.1.3. Definition. Associated to each time-dependent vector field

V on Rn and x0 ∈ Rn, we define a mapping FV,x0

that transforms a

continuous function x : I → Rn (where I is any interval containing t0)

to another such function FV,x0

(x) : I → Rn defined by FV,x0

(x)(t) =

x0 +
∫ t

t0
V (x(s), s) ds.

�Exercise 1–2. Show that any y of the form FV,x0

(x) satisfies the

initial condition y(t0) = x0, and moreover y is continuously differen-

tiable with derivative y′(t) = V (x(t), t).

Recall that if f is any mapping, then a point in the domain of f such

that f(p) = p is called a fixed point of f . Thus we can rephrase the

integral form of the initial value problem as follows:
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1.1.4. Proposition. A continuous map x : I → Rn is a solution

of the initial value problem x′(t) = V (x(t), t), x(t0) = x0 if and only

if x is a fixed point of FV,x0

.

Now if you have had some experience with fixed-point theorems,

that should make your ears perk up a little. Not only are there some

very general and powerful results for proving existence and uniqueness

of fixed points of maps, but even better, there are nice algorithms for

finding fixed points. One such algorithm is the so-called Method

of Successive Approximations. (If you are familiar with Newton’s

Method for finding roots of equations, you will recognize that as a

special case of successive approximations.) If we have a set X and a

self-mapping f : X → X, then to apply successive approximations,

choose some “initial approximation” x0 in X and then inductively

define a sequence xn+1 = f(xn) of “successive approximations”.

�Exercise 1–3. Suppose that X is a metric space, f is continuous,

and that the sequence xn of “successive approximations” converges

to a limit p. Show that p is a fixed point of f .

But is there really any hope that we can use successive approxi-

mations to find solutions of ODE initial value problems? Let us try

a very simple example. Consider the (time-independent) vector field

V on Rn defined by V (x, t) = x. It is easy to check that the unique

solution with x(0) = x0 is given by x(t) = etx0. Let’s try using suc-

cessive approximations to find a fixed point of FV,x0

. For our initial

approximation we choose the constant function x0(t) = x0, and fol-

lowing the general successive approximation prescription, we define

xn inductively by xn+1 = FV,x0

(xn), i.e., xn+1(t) = x0 +
∫ t

0
xn(s) ds.

�Exercise 1–4. Show by induction that xn(t) = Pn(t)x
0, where

Pn(t) is the polynomial of degree n obtained by truncating the power

series for et (i.e.,
∑n

j=0
1
j! t

j).

That is certainly a hopeful sign, and while one swallow may not make

a spring, it should give us hope that a careful analysis of successive

approximations might lead to a proof of the existence and uniqueness

theorems for an arbitrary vector field V . This is in fact the case, but
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we will not give further details here. Instead we refer to Appendix B

where you will find a complete proof.

1.1.5. Remark. We give a minor technical point. The argument

in Appendix B only gives a local uniqueness theorem. That is, it

shows that if x1 : (a, b) → Rn and x2 : (a, b) → Rn are two solutions

of the same ODE, then if x1 and x2 agree at a point, then they also

agree in a neighborhood of that point, so that the set of points in

(a, b) where they agree is open. But since solutions are by definition

continuous, the set of points where x1 and x2 agree is also a closed

subset of (a, b), and since intervals are connected, it then follows that

x1 and x2 agree on all of (a, b).

1.1.6. Remark. The existence and uniqueness theorems tell us

that for a given initial condition x0 we can solve our initial value

problem (uniquely) for a short time interval. The next question we

will take up is for just how long we can “follow a smoke particle”. One

important thing to notice is the uniformity of the ε in the existence

theorem—not only do we have a solution for each initial condition,

but moreover given any p0 in Rn, we can find a fixed interval I =

(t0 − ε, t0 + ε) such that a solution with initial condition p exists

on the whole interval I for all initial conditions sufficiently close to

p0. Still, this may be less than what you had hoped and expected.

You may have thought that for each initial condition p in Rn we

should have a solution xp : R → Rn of the differential equation with

xp(t0) = p. But such a global existence theorem is too much to expect.

For example, taking n = 1 again, consider the differential equation
dx
dt = x2 with the initial condition x(0) = x0. An easy calculation

shows that the unique solution is x(t) = x0

1−x0t
. Note that, for each

initial condition x0, this solution “blows up” at time T = 1
x0
, and

by the Uniqueness Theorem, no solution can exist for a time greater

than T .

But, you say, a particle of smoke will never go off to infinity in

a finite amount of time! Perhaps the smoke metaphor isn’t so good

after all. The answer is that a real, physical wind field has bounded

velocity, and it isn’t hard to show that in this case we do indeed have
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global existence. You will even prove something a lot stronger in a

later exercise.

What can be said is that for each initial condition, p, there is

a unique “maximal” solution of the differential equation with that

initial condition. But before discussing this, we are going to make a

simplification and restrict our attention to time-independent vector

fields (which we shall simply call vector fields). That may sound like

a tremendous loss of generality, but in fact it is no loss of generality

at all!

�Exercise 1–5. Let V (x, t) = (V1(x, t), . . . , Vn(x, t)) be a time-

dependent vector field in Rn, and define an associated time inde-

pendent vector field Ṽ in Rn+1 by Ṽ (y) = (V1(y), . . . , Vn(y), 1).

Show that y(t) = (x(t), f(t)) is a solution of the differential equa-

tion dy
dt = Ṽ (y) if and only if f(t) = t + c and x(t) is a solution

of dx
dt = V (x, t + c). Deduce that if y(t) = (x(t), f(t)) solves the

IVP dy
dt = Ṽ (y), y(t0) = (x0, t0), then x(t) is a solution of the IVP

dx
dt = V (x, t), x(t0) = x0.

This may look like a swindle. We don’t seem to have done much be-

sides changing the name of the original time variable t to xn+1 and

considering it a space variable; that is, we switched to space-time

notation. But the real change is in making the velocity an (n + 1)-

vector too and setting the last component identically equal to one.

In any case this is a true reduction of the time-dependent case to the

time-independent case, and as we shall see, that is quite important,

since time-independent differential equations have special properties

not shared with time-dependent equations that can be used to sim-

plify their study. Time-independent differential equations are usu-

ally referred to as autonomous , and time-dependent ones as nonau-

tonomous. Here is one of the special properties of autonomous sys-

tems.

1.1.7. Proposition. If x : (a, b) → Rn is any solution of the

autonomous differentiable equation dx
dt = V (x) and t0 ∈ R, then

y : (a+ t0, b+ t0) → Rn defined by y(t) = x(t− t0) is also a solution

of the same equation.
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�Exercise 1–6. Prove the above proposition.

Consequently, when considering the IVP for an autonomous dif-

ferentiable equation, we can assume that t0 = 0. For if x(t) is a

solution with x(0) = p, then x(t−t0) will be a solution with x(t0) = p.

1.1.8. Remark. There is another trick that allows us to reduce

the study of higher-order differential equations to the case of first-

order equations. We will consider this in detail later, but here is a

short preview. Consider the second-order differential equation: d2x
dt2 =

f(x, dx
dt , t). Introduce a new variable v (the velocity) and consider

the following related system of first-order equations: dx
dt = v and

dv
dt = f(x, v, t). It is pretty obvious there is a close relation between

curves x(t) satisfying x′′(t) = f(x(t), x′(t), t) and pairs of curves x(t),

v(t) satisfying x′(t) = v(t) and v′(t) = f(x(t), v(t), t).

�Exercise 1–7. Define the notion of an initial value problem for

the above second-order differential equation, and write a careful state-

ment of the relation between solutions of this initial value problem

and the initial value problem for the related system of first-order dif-

ferential equations.

We will now look more closely at the uniqueness question for solu-

tions of an initial value problem. The answer is summed up succinctly

in the following result.

1.1.9. Maximal Solution Theorem. Let dx
dt = V (x) be an au-

tonomous differential equation in Rn and p any point of Rn. Among

all solutions x(t) of the equation that satisfy the initial condition

x(0) = p, there is a maximum one, σp, in the sense that any solution

of this IVP is the restriction of σp to some interval containing zero.

�Exercise 1–8. If you know about connectedness, you should be

able to prove this very easily. First, using the local uniqueness the-

orem, show that any two solutions agree on their overlap, and then

define σp to be the union of all solutions.

Henceforth whenever we are considering some autonomous differ-

ential equation, σp will denote this maximal solution curve with initial
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condition p. The interval on which σp is defined will be denoted by

(α(p), ω(p)), where of course α(p) is either −∞ or a negative real

number and ω(p) is either ∞ or a positive real number.

As we have seen, a maximal solution σp need not be defined on

all of R, and it is important to know just how the solution “blows

up” as t approaches a finite endpoint of its interval of definition. A

priori it might seem that the solution could remain in some bounded

region, but it is an important fact that this is impossible—if ω(p) is

finite, then the reason the solution cannot be continued past ω(p) is

simply that it escapes to infinity as t approaches ω(p).

1.1.10. No Bounded Escape Theorem. If ω(p) < ∞, then

lim
t→ω(p)

‖σp(t)‖ = ∞,

and similarly, if α(p) > −∞, then

lim
t→α(p)

‖σp(t)‖ = ∞.

�Exercise 1–9. Prove the No Bounded Escape Theorem. (Hint: If

limt→ω(p) ‖σ(p)‖ �= ∞, then by Bolzano-Weierstrass there would be

a sequence tk converging to ω(p) from below, such that σp(tk) → q.

Then use the local existence theorem around q to show that you could

extend the solution beyond ω(p). Here is where we get to use the fact

that there is a neighborhood O of q such that a solution exists with

any initial condition q′ in O and defined on the whole interval

(−ε, ε). For k sufficiently large, we will have both σp(tk) in O and

tk > ω − ε, which quickly leads to a contradiction.)

Here is another special property of autonomous systems.

�Exercise 1–10. Show that the images of the σp partition Rn into

disjoint smooth curves (the “streamlines” of smoke particles). These

curves are referred to as the orbits of the ODE. (Hint: If x(t) and ξ(t)

are two solutions of the same autonomous ODE and if x(t0) = ξ(t1),

then show that x(t0 + s) = ξ(t1 + s).)
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1.1.11. Definition. A C1 vector field V : Rn → Rn (and also

the autonomous differential equation dx
dt = V (x)) is called complete if

α(p) = −∞ and ω(p) = ∞ for all p in Rn. In this case, for each t ∈ R

we define a map φt : R
n → Rn by φt(p) = σp(t). The mapping t �→ φt

is called the flow generated by the differential equation dx
dt = V (x).

1.1.12. Remark. Using our smoke particle metaphor, the mean-

ing of φt can be explained as follows: if a puff of smoke occupies a

region U at a given time, then t units of time later it will occupy the

region φt(U). Note that φ0 is clearly the identity mapping of Rn.

�Exercise 1–11. Show that the φt satisfy φt1+t2 = φt1φt2 , so that

in particular φ−t = φ−1
t . In other words, the flow generated by a

complete, autonomous vector field is a homomorphism of the additive

group of real numbers into the group of bijective self-mappings of Rn.

In the next section we will see that (t, p) �→ φt(p) is jointly contin-

uous, so that the φt are homeomorphisms of Rn. Later (in Appendix

F) we will also see that if the vector field V is Cr, then (t, p) �→ φt(p)

is also Cr, so that the flow generated by a complete, autonomous,

Cr differential equation dx
dt = V (x) is a homomorphism of R into the

group of Cr diffeomorphisms of Rn. The branch of mathematics that

studies the properties of flows is called dynamical systems theory .

•Example 1–1. Constant Vector Fields. The simplest exam-

ples of autonomous vector fields in Rn are the constant vector fields

V (x) = v, where v is some fixed vector in Rn. The maximal so-

lution curve with initial condition p of dx
dt = v is clearly the linearly

parametrized straight line σp : R → Rn given by σp(t) = p+tv, and it

follows that these vector fields are complete. The corresponding flow

φt is given by φt(p) = p+ tv, so for obvious reasons these are called

constant velocity flows. In words, φt is translation by the vector tv,

and indeed these flows are precisely the one-parameter subgroups of

the group of translations of Rn.

•Example 1–2. Exponential Growth. An important complete

vector field in R is the linear map V (x) = kx. The maximal solution

curves of dx
dt = kx are again easy to write down explicitly, namely
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σp(t) = ektp; i.e., in this case the flow map φt is just multiplication

by ekt.

•Example 1–3. Harmonic Oscillator. If we start from the

Harmonic Oscillator Equation, d2x
dt2 = −x, and use the trick above

to rewrite this second-order equation as a first-order system, we end

up with the linear system in R2: dx
dt = −y, dy

dt = x. In this case

the maximal solution curve σ(x0,y0)(t) can again be given explicitly,

namely σ(x0,y0)(t) = (x0 cos(t)−y0 sin(t), x0 sin(t)+y0 cos(t)), so that

now φt is rotation in the plane through an angle t. It is interesting

to observe that this can be considered a special case of (a slightly

generalized form of) the preceding example. Namely, if we identify

R2 with the complex planeC in the standard way (i.e., a+ib := (a, b))

and write z = (x, y) = x + iy, z0 = (x0, y0) = x0 + iy0, then since

iz = i(x + iy) = −y + ix = (−y, x), we can rewrite the above first-

order system as dz
dt = iz, which has the solution z(t) = eitz0. Of

course, multiplication by eit is just rotation through an angle t.

It is very useful to have conditions on a vector field V that will guar-

antee its completeness.

�Exercise 1–12. Show that ‖σp(t)− p‖ ≤
∫ t

0
‖V (σp(t))‖ dt. Use

this and the No Bounded Escape Theorem to show that dx
dt = V (x)

is complete provided that V is bounded (i.e., supx∈Rn ‖V (x)‖ < ∞).

�Exercise 1–13. A vector field V may be complete even if it is

not bounded, provided that it doesn’t “grow too fast”. Let B(r) =

sup‖x‖<r ‖V (x)‖. Show that if
∫∞
1

dr
B(r) = ∞, then V is complete.

Hint: How long does it take σp(t) to get outside a ball of radius R?

�Exercise 1–14. If a vector field is not complete, then given any

positive ε, there exist points p where either α(p) > −ε or ω(p) < ε.

1.2. Euler’s Method

Only a few rather special initial value problems can be solved in closed

form using standard elementary functions. For the general case it is
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necessary to fall back on constructing an approximate solution nu-

merically with the aid of a computer. But what algorithm should

we use to program the computer? A natural first guess is succes-

sive approximations. But while that is a powerful theoretical tool

for studying the general properties of initial value problems (and in

particular for proving existence and uniqueness), it does not lead to

an efficient algorithm for constructing numerical solutions.

In fact there is no one simple answer to the question of what

numerical algorithm to use for solving ODEs, for there is no single

method that is “best” in all situations. While there are integration

routines (such as the popular fourth-order Runge-Kutta integration)

that are fast and accurate when used with many of the equations one

meets, there are many situations that require a more sophisticated

approach. Indeed, this is still an active area of research, and there

are literally dozens of books on the subject. Later, in the chapter on

numerical methods, we will introduce you to many of the subtleties of

this topic, but here we only want to give you a quick first impression

by describing one of the oldest numerical approaches to solving an

initial value problem, the so-called “Euler Method”. While rarely an

optimal choice, it is intuitive, simple, and effective for some purposes.

It is also the prototype for the design and analysis of more sophisti-

cated algorithms. This makes it an excellent place to become familiar

with the basic concepts that enter into the numerical integration of

ODE.

In what follows we will suppose that f(t,y) is a C1 time-depend-

ent vector field on Rd, to in R and yo in Rd. We will denote by

σ(f ,yo, to, t) the solution operator taking this data to the values y(t)

of the maximal solution of the associated initial value problem. By

definition, y(t) is the function defined on a maximal interval I =

[to, to+T∗), with 0 < T∗ ≤ ∞, satisfying the differential equation dy
dt =

f(t,y) and the initial condition y(to) = yo. The goal in the numerical

integration of ODE is to devise effective methods for approximating

such a solution y(t) on an interval I = [to, to + T ] for T < T∗. The

strategy that many methods use is to discretize the interval I using

N + 1 equally spaced gridpoints tn := to + nh, n = 0, . . . , N with

h = T
N so that t0 = to and tN = to + T and then use some algorithm



18 1. Differential Equations and Their Solutions

to define values y0, . . . ,yN in Rd, in such a way that when N is

large, each yn is close to the corresponding y(tn). The quantity

max0≤n≤N ‖y(tn)− yn‖ is called the global error of the algorithm

on the interval. If the global error converges to zero as N tends to

infinity (for every choice of f satisfying some Lipschitz condition, to,

yo, and T < T∗), then we say that we have a convergent algorithm.

Euler’s Method is a convergent algorithm of this sort.

One common way to construct the algorithm that produces the

values y1, . . . , yN uses a recursion based on a so-called (one-step)

“stepping procedure”. This is a discrete approximate solution opera-

tor, Σ(f ,yn, tn, h), having as inputs

1) a time-dependent vector field f on Rd,

2) a time tn in R,

3) a value yn in Rd corresponding to the initial time, and

4) a “time-step” h in R

and as output a point of Rd that approximates the solution of the

initial value problem y′ = f(t,y), y(ti) = yi at ti + h well when

h is small. (More precisely, the so-called “local truncation error”,

‖σ(f ,y(tn), tn, tn + h)− Σ(f ,y(tn), tn, h)‖, should approach zero at

least superlinearly in the time-step h.) Given such a stepping pro-

cedure, the approximations yn of the y(tn) are defined recursively

by yn+1 = Σ(f ,yn, tn, h). Numerical integration methods that use

discrete approximations of derivatives defining the vector field f to

obtain the operator Σ are referred to as finite difference methods.

1.2.1. Remark. Notice that there will be two sources that con-

tribute to the global error, ‖y(tn)− yn‖. First, at each stage of the

recursion there will be an additional local truncation error added to

what has already accumulated up to that point. Moreover, because

the recursion uses yn rather than y(tn), after the first step there will

be an additional error that includes accumulated local truncation er-

rors, in addition to amplification or attenuation of these errors by the

method. (In practice there is a third source of error, namely machine

round-off error from using floating-point arithmetic. Since these are
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amplified or attenuated in the same manner as truncation errors, we

will often consolidate them and pretend that our computers do precise

real number arithmetic, but there are situations where it is important

to take it into consideration.)

For Euler’s Method the stepping procedure is particularly simple

and natural. It is defined by ΣE(f ,yn, tn, h) := yn + h f(tn,yn).

It is easy to see why this is a good choice. If as above we denote

σ(f ,yn, tn, t) by y(t), then by Taylor’s Theorem,

y(tn + h) =y(tn) + hy′(tn) +O(h2)

=yn + h f(tn,yn) +O(h2)

=ΣE(f ,yn, tn, h) + O(h2),

so that ‖σ(f ,yn, tn, tn + h)− ΣE(f ,yn, tn, h)‖, the local truncation

error for Euler’s Method, does go to zero quadratically in h. When

we partition [to, to + T ] into N equal parts, h = T
N , each step in the

recursion for computing yn will contribute a local truncation error

that is O(h2) = O( 1
N2 ). Since there are N steps in the recursion and

at each step we add O( 1
N2 ) to the error, this suggests that the global

error will be O( 1
N ) and hence will go to zero as N tends to infinity.

However, because of the potential amplification of prior errors, this

is not a complete proof that Euler’s Method is convergent, and we

will put off the details of the rigorous argument until the chapter on

numerical methods.

�Exercise 1–15. Show that Euler’s Method applied to the initial

value problem dy
dt = y with y(0) = 1 gives limN→∞(1 + T

N )N = eT .

For T = 1 and N = 2, show that the global error is indeed greater

than the sum of the two local truncation errors.

1.3. Stationary Points and Closed Orbits

We next describe certain special types of solutions of a differential

equation that play an important role in the description and analysis

of the global behavior of its flow. For generality we will also consider

the case of time-dependent vector fields, but these solutions are really

most important in the study of autonomous equations.
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If a constant map σ : I → Rn, σ(t) = p for all t ∈ I, is a solution

of the equation dx
dt = V (x, t), then V (p, t) = σ′(t) = 0 for all t, and

conversely this implies σ(t) ≡ p is a solution. In particular, in the

autonomous case, the maximal solution σp is a constant map if and

only if V (p) = 0. Such points p are of course called zeros of the time-

independent vector field V , but because of their great importance

they have also been given many more aliases, including critical point,

singularity, stationary point, rest point, equilibrium point, and fixed

point.

A related but more interesting type of solution of dx
dt = V (x, t) is a

so-called closed orbit , also referred to as a periodic solution. To define

these, we start with an arbitrary solution σ defined on the whole real

line. A real number T is called a period of σ if σ(t) = σ(t + T ) for

all t ∈ R, and we will denote by Per(σ) the set of all periods of σ.

Of course 0 is always a period of σ, and one possibility is that it is

the only period, in which case σ is called a nonperiodic orbit. At

the other extreme, σ is a constant solution if and only if every real

number is a period of σ.

What other possibilities are there for Per(σ)? To answer that, let

us look at some obvious properties of the set of periods. First, Per(σ)

is clearly a closed subset of R—this follows from the continuity of σ.

Secondly, if T1 and T2 are both periods of σ, then σ(t+ (T1 − T2)) =

σ((t− T2) + T1) = σ(t− T2) = σ(t− T2 + T2) = σ(t), so we see that

the difference of any two periods is another period. Thus Per(σ) is

a closed subgroup of the group of real numbers under addition. But

the structure of such groups is well known.

1.3.1. Proposition. If Γ is a closed subgroup of R, then either

Γ = R, or Γ = {0}, or else there is a smallest positive element γ in Γ

and Γ consists of all integer multiples of γ.

�Exercise 1–16. Prove this proposition. (Hint: If Γ is nontrivial,

then the set of positive elements of Γ is nonempty and hence has a

greatest lower bound γ which is in Γ since Γ is closed. If γ = 0, show

that Γ is dense in R and hence it is all of R. If γ �= 0, it is the

smallest positive element of Γ. In this case, if n ∈ Γ, then dividing n
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by γ gives n = qγ + r with 0 ≤ r < γ. Show that the remainder, r,

must be zero.)

A solution σ is called periodic if it is nonconstant and has a non-

trivial period, so that by the proposition all its periods are multiples

of a smallest positive period γ, called the prime period of σ.

A real number T is called a period of the time-dependent vector

field V if V (x, t) = V (x, t + T ) for all t ∈ T and x ∈ R. A repeat

of the arguments above show that the set Per(V ) of all periods of V

is again a closed subgroup of R, so again there are three cases: 1)

Per(V ) = R, i.e., V is time-independent, 2) Per(V ) = {0}, i.e., V is

nonperiodic, or 3) there is a smallest positive element T0 of Per(V )

(the prime period of V ) and Per(V ) consists of all integer multiples

of this prime period.

�Exercise 1–17. Show that if T is a period of the time-dependent

vector field V and σ is a solution of dx
dt = V (x, t), then T is also a

period of σ provided there exists a real number t1 such that σ(t1) =

σ(t1 + T ). (Hint: Use the uniqueness theorem.)

Note the following corollary: in the autonomous case, if an orbit

σ “comes back and meets itself”, i.e., if there are two distinct times t1
and t2 such that σ(t1) = σ(t2), then σ is a periodic orbit and t2 − t1
is a period. For this reason, periodic solutions of autonomous ODEs

are also referred to as closed orbits. Another way of stating this same

fact is as follows:

1.3.2. Proposition. Let φt be the flow generated by a complete,

autonomous ODE, dx
dt = V (x). A necessary and sufficient condition

for the maximum solution curve σp with initial condition p to be

periodic with period T is that p be a fixed point of φT .

•Example 1–4. For the harmonic oscillator system in R2: dx
dt =

−y, dy
dt = x, we have seen that the solution with initial condition

(x0, y0) is x(t) = x0 cos(t) − y0 sin(t), y(t) = x0 sin(t) + y0 cos(t).

Clearly the origin is a stationary point, and every other solution is

periodic with the same prime period 2π.
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1.3.3. Remark. The ODEs modeling many physical systems have

periodic orbits, and each such orbit defines a physical “clock” whose

natural unit is the prime period of the orbit. We simply choose a con-

figuration of the system that lies on this periodic orbit and tick off the

successive recurrences of that configuration to “tell time”. The resolu-

tion to which before and after can be distinguished with such a clock is

limited to approximately the prime period of the orbit. There seems

to be no limit to the benefits of ever more precise chronometry—

each time a clock has been constructed with a significantly shorter

period, it has opened up new technological possibilities. Humankind

has always had a 24-hour period clock provided by the rotation of the

earth on its axis, but it was only about four hundred years ago that

reasonably accurate clocks were developed with a period in the 1-

second range. In recent decades the resolution of clocks has increased

dramatically. For example, the fundamental clock period for the com-

puter on which we are writing this text is about 0.4× 10−9 seconds.

The highest resolution (and most accurate) of current clocks is the

cesium vapor atomic clocks used by international standards agencies.

These have a period of about 10−11 seconds (with a drift error of

about 1 second in 300,000 years!). This means that if two events oc-

cur only one hundred billionth of a second apart, one of these clocks

can in principle tell which came first.

1.4. Continuity with Respect to Initial Conditions

We consider next how the maximal solutions σp of a first-order ODE
dx
dt = V (x) depends on the initial condition p. Eventually we will

see that this dependence is as smooth as the vector field V , but as a

first step we will content ourselves with proving just continuity. The

argument rests on a simple but important general principle called

Gronwall’s Inequality.

1.4.1. Gronwall’s Inequality. Let u : [0, T ) → [0,∞) be a

continuous, nonnegative, real-valued function and assume that u(t) ≤
U(t) := C+K

∫ t

0
u(s) ds for certain constants C ≥ 0 andK > 0. Then

u(t) ≤ CeKt.
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�Exercise 1–18. Prove Gronwall’s Inequality.

Hint: Since u ≤ U , it is enough to show that U(t) ≤ CeKt, or

equivalently that e−KtU(t) ≤ C, and since U(0) = C, it will suffice

to show that e−KtU(t) is nonincreasing, i.e., that (e−KtU(t))′ ≤ 0.

Since (e−KtU(t))′ = e−Kt(U ′(t) −KU) and U ′ = Ku, this just says

that Ke−Kt(u− U) ≤ 0.

1.4.2. Theorem on Continuity w.r.t. Initial Conditions.

Let V be a C1 vector field on Rn and let σp(t) denote the maxi-

mal solution curve of dx
dt = V (x) with initial condition p. Then as

q tends to p, σq(t) approaches σp(t), and the convergence is uniform

for t in any bounded interval I on which σp is defined.

Proof. We have seen that σp(t) = p+
∫ t

0
V (σp(s), s) ds, and it follows

that ‖σp(t)− σq(t)‖ ≤ ‖p− q‖ +
∫ t

0
‖V (σp(s), s)− V (σq(s), s)‖ ds.

On the other hand, it is proved in Appendix A that on any bounded

set (and in particular on a bounded neighborhood of σp(I) × I) V

satisfies a Lipschitz condition ‖V (x, t)− V (y, t)‖ ≤ K ‖x− y‖, so

it follows that ‖σp(t)− σq(t)‖ ≤ ‖p− q‖ + K
∫ t

t0
‖σp(s)− σq(s)‖ ds.

It now follows from Gronwall’s Inequality that ‖σp(t)− σq(t)‖ ≤
‖p− q‖ eKt.

1.4.3. Remark. For the differential equation dx
dt = kx, the max-

imal solution is σp(t) = ektp, so ‖σp(t)− σq(t)‖ = ekt ‖p− q‖. Thus

if k is positive, then any two solutions diverge from each other expo-

nentially fast, while if k is negative, all solutions approach the origin

(and hence each other) exponentially fast.

But continuity with respect to initial conditions is not the whole

story.

1.4.4. Theorem on Smoothness w.r.t. Initial Conditions.

Let V be a Cr vector field on Rn, r ≥ 1, and let σp(t) denote the

maximal solution curve of dx
dt = V (x) with initial condition p. Then

the map (p, t) �→ σp(t) is C
r.

The proof of this theorem is one of the most difficult in elementary

ODE theory, and we have deferred it to Appendix F.
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Let V : Rn × Rk → Rn be a smooth function. Then to each

α in Rk we can associate a vector field V (·, α) on Rk, defined by

x �→ V (x, α). For this reason it is customary to consider V as a

“vector field on Rn depending on a parameter α in Rk”. It is often

important to know how solutions of dx
dt = V (x, α) depend on the

parameter α, and this is answered by the following theorem.

1.4.5. Theorem on Smoothness w.r.t. Parameters. Let

V : Rn × Rk → Rn be a Cr map, r > 1, and let σα
p denote the

maximum solution curve of dx
dt = V (x, α) with initial condition p.

Then the map (p, α, t) �→ σα
p (t) is C

r.

�Exercise 1–19. Deduce this from the Theorem on Smoothness

w.r.t. Initial Conditions. Hint: This is another one of those cute

reduction arguments that this subject is full of. The idea is to consider

the vector field Ṽ on Rn × Rk defined by Ṽ (x, α) = (V (x, α), 0)

and to note that its maximal solution with initial condition (p, α) is

t �→ (σα
p (t), α).

You may have noticed an ambiguity inherent in our use of σp to

denote the maximal solution curve with initial condition p of a vector

field V . After all, this maximal solution clearly depends on V as

well as on p, so let us now be more careful and denote it by σV
p . Of

course, this immediately raises the question of just how σV
p depends

on V . If V changes just a little, does it follow that σV
p also does

not change by much? If we return to our smoke particle in the wind

metaphor, then this seems reasonable; if we make a tiny perturbation

of the direction and speed of the wind at every point, it seems that

the path of a smoke particle should not be grossly different. This

intuition is correct, and all that is required to prove it is another

tricky application of Gronwall’s Inequality.

1.4.6. Theorem on the Continuity of σV
p w.r.t. V. Let V be

a C1 time-dependent vector field on Rn and let K be a Lipschitz con-

stant for V , in the sense that ‖V (x, t)− V (y, t)‖ ≤ K ‖x− y‖ for all

x, y, and t. IfW is another C1 time-dependent vector field onRn such

that ‖V (x, t)−W (x, t)‖ ≤ ε for all x and t, then
∥∥σV

p (t)− σW
p (t)

∥∥ ≤
ε
K

(
eKt − 1

)
.
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�Exercise 1–20. Prove the above theorem. Hint: If we define

u(t) =
∥∥σV

p (t)− σW
p (t)

∥∥ + ε
K , then the conclusion may be written

as u(t) ≤ ε
K eKt, which follows from Gronwall’s Inequality provided

we can prove u(t) ≤ ε
K + K

∫ t

0
u(s) ds. To show that, start from

u(t) − ε
K =

∥∥σV
p (t)− σW

p (t)
∥∥ ≤

∫ t

0

∥∥V (σV
p (s))−W (σW

p (s))
∥∥ ds and

use ∥∥V (σV
p (s))−W (σW

p (s))
∥∥ ≤

∥∥V (σV
p (s))− V (σW

p (s))
∥∥

+
∥∥V (σW

p (s))−W (σW
p (s))

∥∥
≤ (Ku(s)− ε) + ε = Ku(s).

1.5. Chaos—Or a Butterfly Spoils Laplace’s Dream

L’état présent du système de la Nature est évidemment une

suite de ce qu’elle était au moment précédent et, si nous

concevons une intelligence qui, pour un instant donné, em-

brasse tous les rapports des êtres de cet Univers, elle pourra

déterminer pour un temps quelconque pris dans le passé ou

dans l’avenir la position respective, les motions et générale-

ment toutes les affections de ces êtres. . .

—Pierre Simon de Laplace, 17731

The so-called “scientific method” is a loosely defined iterative process

of experimentation, induction, and deduction with the goal of deriv-

ing general “laws” for describing various aspects of reality. Prediction

plays a central role in this enterprise. During the period of discovery

and research, comparing experiments against predictions helps elim-

inate erroneous preliminary versions of a theory and conversely can

provide confirming evidence when a theory is correct. And when a

theory finally has been validated, its predictive power can lead to valu-

able new technologies. In the physical sciences, the laws frequently

take the form of differential equations (of just the sort we have been

1The current state of Nature is evidently a consequence of what it was in the
preceding moment, and if we conceive of an intelligence that at a given moment
knows the relations of all things of this Universe, it could then tell the positions,
motions and effects of all of these entities at any past or future time. . .
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considering) that model the time-evolution of various real-world pro-

cesses. So it should not be surprising that the sort of issues that we

have just been discussing have important practical and philosophical

ramifications when it comes to evaluating and interpreting the pre-

dictive power of such laws, and indeed some of the above theorems

were developed for just such reasons.

At first glance, it might appear that theory supports Laplace’s

ringing deterministic manifesto quoted above. But if we examine

matters with more care, it becomes evident that, while making de-

pendable predictions might be possible for a god who could calculate

with infinite precision and who knew the laws with perfect accuracy,

for any lesser beings there are severe problems not only in practice

but even in principle.

First let us look at the positive side of things. In order to make

reliable predictions based on a differential equation dx
dt = V (x), at

least the following two conditions must be satisfied:

1) There should be a unique solution for each initial condition, and

it should be defined for all t ∈ R.

2) This solution should depend continuously on the initial condition

and also on the vector field V .

Initial value problems that satisfy these two conditions are often re-

ferred to as “well-posed” problems.

The importance of the first condition is obvious, and we will not

say more about it. The second is perhaps less obvious, but neverthe-

less equally important. The point is that even if we know the initial

conditions with perfect accuracy (which we usually do not), the finite

precision of machine representation of numbers as well as round-off

and truncation errors in computer algorithms would introduce small

errors. So if arbitrarily small differences in initial conditions resulted

in wildly different solutions, then prediction would be impossible.

Similarly we do not in practice ever know the vector field V per-

fectly. For example, in the problem of predicting the motions of the

planets, it is not just their mutual positions that determine the force

law V , but also the positions of all their moons and of the great mul-

titude of asteroids and comets that inhabit the solar system. If the
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tiny force on Jupiter caused by a small asteroid had a significant ef-

fect on its motion, then predicting the planetary orbits would be an

impossible task.

In the preceding section we saw that complete, C1 vector fields do

give rise to a well-posed initial value problem, so Laplace seems to be

on solid ground. Nevertheless, even though the initial value problems

that arise in real-world applications may be technically well-posed in

the above sense, they often behave as if they were ill-posed. For a class

of examples that turns up frequently—the so-called chaotic systems—

predictability is only an unachievable theoretical ideal. While their

short-term behavior is predictable, on longer time-scales prediction

becomes, for practical purposes, impossible. This may seem para-

doxical at first; if we have an algorithm for predicting accurately for

ten seconds, then should not repeating it with that first prediction

as a new initial condition provide an accurate prediction for twenty

seconds? Unfortunately, a hallmark feature of chaotic systems, called

“sensitive dependence on initial conditions”, defeats this strategy.

Let us consider an initial value problem dx
dt = V (x), x(0) = p0

and see how things go wrong for a chaotic system when we try to

compute σp0
(t) for large t. Suppose that p1 is very close to p0, say

‖p0 − p1‖ < δ, and let us compare σp1
(t) and σp0

(t). Continuity with

respect to initial conditions tells us that for δ small enough σp1
(t) at

least initially will not diverge too far from σp1
(t). In fact, for a chaotic

system, a typical behavior—when p0 is near a so-called “strange

attractor”—is for σp1
(t) to at first “track” σp0

(t) in the sense that

‖σp0
(t)− σp1

(t)‖ initially stays nearly constant or even decreases—so

in particular the motions of σp0
(t) and σp1

(t) are highly correlated.

But then, suddenly, there will be a period during which σp1
(t) starts

to veer off in a different direction, following which ‖σp0
(t)− σp1

(t)‖
will grow exponentially fast for a while. Soon they will be far apart,

and although their distance remains bounded, from that time forward

their motions become completely uncorrelated. If we make δ smaller,

then we can guarantee that σp1
(t) will track σp0

(t) for a longer period,

but (and this is the essence of sensitive dependence on initial condi-

tions) no matter how small we make δ, the veering away and

loss of correlation will always occur. The reason this is relevant
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is that when we try to compute σp0
(t), there will always be some tiny

error in the initial condition, and in addition there will be system-

atic rounding, discretization, and truncation errors in our numerical

integration process, so we are always in essence computing σp1
(t) for

some p1 near p0 rather than computing σp0
(t) itself. The important

thing to remember is that even the most miniscule of deviations will

get enormously amplified after the loss of correlation occurs.

While there is no mathematical proof of the fact, it is generally

believed that the fluid mechanics equations that govern the evolution

of weather are chaotic. The betting is that accurate weather pre-

dictions more than two weeks in advance will never be feasible, no

matter how much computing power we throw at the problem. As the

meteorologist Edward Lorenz once put it, “... the flap of a butterfly’s

wings in Brazil can set off a tornado in Texas.” This metaphor has

caught on, and you will often hear sensitive dependence on initial

conditions referred to as the “butterfly effect”.

In Figure 1.2 we show a representation of the so-called “Lorenz

attractor”. This shows up in an ODE that Lorenz was studying as

a highly over-simplified meteorological model . The Web Companion

has a QuickTime Movie made with 3D-XplorMath that shows the

Lorenz attractor being generated in real time. What is visible from

the movie (and not in the static figure) is how two points of the

orbit that are initially very close will moments later be far apart, on

different “wings” of the attractor. (By the way, the fact that the

Lorenz attractor resembles a butterfly is totally serendipitous!)

Figure 1.2. The Lorenz attractor.
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Another strange attractor, shown in Figure 1.3, appears in an

ODE called the Rikitake Two-Disk Dynamo. Like the Lorenz system,

the Rikitake ODE was invented to model an important real-world

phenomenon, namely the Earth’s geomagnetic field. The flipping back

and forth between attractor “wings” in this case corresponds to the

flipping of the Earth’s North and South Magnetic Poles that has long

been known from the geologic record.

Figure 1.3. The Rikiatke attractor.

Fortunately, even though systems that exhibit sensitive depen-

dence on initial conditions do not permit long-time a priori prediction,

it does not follow that such systems cannot be used to control pro-

cesses that go on over long time periods. For example, when NASA

sends a space-probe to a distant planet, the procedure is to look at

all initial conditions and times that end up at the appropriate point

on the given planet and then among these optimize for some variable

(such as the transit time or payload weight). Of course they are using

the prediction that with this choice of time and initial condition the

probe will end up on the planet, but they realize that this prediction

is only a first approximation. After lift-off, the current position and

velocity of the probe is measured at intervals small enough to assure

only small deviation from the previous predicted values. Then, these

actual position and velocity are compared with the desired values and

a “mid-course correction” is programmed that will bring the actual

values back in line with the desired values. The equations governing
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a space probe are not actually chaotic, but this same sort of control-

lability has also been proved rigorously for certain chaotic systems.

Experiment. Balance a broomstick vertically as best you can and

let it fall. Repeat this many times, each time measuring the angle it

makes with a fixed direction. You will see that the angles are ran-

domly distributed around a circle, suggesting sensitive dependence on

initial conditions (even though this system is not technically chaotic).

Now place the broomstick on your fingertip and try to control it in a

nearly upright position by making rapid slight finger motions—most

people know almost instinctively how to do this. It is also instructive

to note that you can make small rapid back-and-forth motions with

your finger in a pre-planned direction, adding small perturbations as

required to maintain the broomstick in approximate balance. (It is a

fact that this actually serves to stabilize the control problem.)

We hope you have asked yourself an obvious question. If the

weather is too chaotic to predict, can we perhaps nevertheless control

it? After all, if a tiny butterfly can really perturb things enough to

cause a storm a week later, it should not be beyond the power of

humans to sense the effects of this perturbation while it is still small

enough to counteract. (Of course this is not an entirely new idea—

people have been seeding clouds to produce rain for decades. But the

real challenge is to learn enough about how large weather systems

evolve to be able to guide their development effectively with available

amounts of energy.)

�Exercise 1–21. Learn how to control the weather. Hint: It could

easily take you a lifetime to complete this exercise, but if you succeed,

it will have been a life well spent.

1.5.1. Further Notes on Chaos. The study of chaotic systems

is a relatively new field of mathematics, and even the “correct” defi-

nition of chaos is still a matter of some debate. In fact chaos should

probably be thought of more as a “syndrome”—a related collection

of symptoms—than as a precisely defined concept. We have con-

centrated here on one particular symptom of chaotic systems, their

sensitive dependence on initial conditions, but there are others that
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are closely related and equally as important, such as having a pos-

itive “Lyapounov Exponent”, the existence of so-called “strange at-

tractors”, “homoclinic tangles”, and “horseshoe maps”. These latter

concepts are quite technical, and we will not attempt to define or

describe them here (but see the references below).

In recent years chaos theory and the related areas of dynamical

systems and nonlinear science, have been the focus of enormous ex-

citement and enthusiasm, giving rise to a large and still rapidly grow-

ing literature consisting of literally hundreds of books, some technical

and specialized and others directed at the lay public. Two of the best

nontechnical expositions are David Ruelle’s “Chance and Chaos” and

James Gleick’s “Chaos: Making a New Science”. For an excellent

introduction at a more mathematically sophisticated level see the col-

lection of articles in “Chaos and Fractals: The Mathematics Behind

the Computer Graphics”, edited by Robert Devaney and Linda Keen.

Other technical treatment we can recommend are Steven Strogatz’

“Nonlinear Dynamics and Chaos”, Hubbard and West’s “Differential

Equations: A Dynamical Systems Approach”, Robert Devaney’s “A

First Course in Chaotic Dynamical Systems”, and Tom Mullin’s “The

Nature of Chaos”.

1.6. Analytic ODE and Their Solutions

Until now we have worked entirely in the real domain, but we can

equally well consider complex-valued differential equations. Of course

we should be precise about how to interpret this concept, and in

fact there are several different interpretations with different levels of

interest and sophistication. Using the most superficial generalization,

it seems as if there is nothing really new—since we can identify C

with R2, a smooth vector field on Cn is just a smooth vector field on

R2n. But even here there are some advantages in using a complex

approach. Recall the important two-dimensional real linear system
dx
dt = −y, dy

dt = x, mentioned earlier, that arises when we reduce the

harmonic oscillator equation d2x
dt2 = −x to a first-order system. We

saw that if we regard R2 as C and write z = x + iy as usual, then

our system becomes dz
dt = iz, so the solution with initial condition
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z0 is evidently z(t) = eitz0, and we recover the usual solution of the

harmonic oscillator by taking the real part of this complex solution.

But if you have had a standard course on complex function theory,

then you can probably guess what the really important generalization

should be. First of all, we should replace the time t by a complex

variable τ , demand that the vector field V that occurs on the right-

hand side of our equation dz
dτ = V (z) is an analytic function of z, and

look for analytic solutions z(τ ).

To simplify the notation, we will consider the case of a single

equation, but everything works equally well for a system of equations
dzi
dτ = Vi(z1, . . . , zn). We shall also assume that V is an entire function

(i.e., defined and analytic on all of C), but the generalization to the

case that V is only defined in some simply connected region Ω ⊂ C

presents little extra difficulty.

Let us write H(Br,C) for the space of continuous, complex-

valued functions defined on Br (the closed disk of radius r in C)

that are analytic in the interior. Just as in the real case, we can

define the map F = FV,z0 of H(Br,C) into itself by F (ζ)(τ ) = z0 +∫ τ

0
V (ζ(σ)) dσ. Note that by Cauchy’s Theorem the integral is well-

defined, independent of the path joining 0 to τ , and since the indefinite

integral of an analytic function is again analytic, F does indeed map

H(Br,C) to itself. Clearly F (ζ)(0) = z0 and
d
dτ F (ζ)(τ ) = V (ζ(τ )), so

ζ ∈ H(Br,C) satisfies the initial value problem dz
dτ = V (z), z(0) = z0

if and only if it is a fixed point of FV,z0 . The fact that a uniform

limit of a sequence of analytic functions is again analytic implies

that H(Br,C) is a complete metric space in the metric ρ(ζ1, ζ2) =

‖ζ1 − ζ2‖∞ given by the “sup” norm, ‖ζ‖∞ = supτ∈Br
|ζ(τ )|. We

now have all the ingredients required to extend to this new setting

the same Banach Contraction Principle argument used in Appendix

B to prove the existence and uniqueness theorem in the real case. It

follows that given z ∈ C, there is a neighborhood O of z and a posi-

tive ε such that for each z0 ∈ O there is a unique ζz0 ∈ H(Bε,C) that

solves the initial value problem dz
dτ = V (z), z(0) = z0. And the proof

in Appendix F that solutions vary smoothly with the initial condition

generalizes to show that ζz0 is holomorphic in the initial condition z0.
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Now let us consider the case of a real ODE, dx
dt = V (x), but

assume that the vector field V : Rn → Rn is analytic. This means

simply that each component Vi(x1, . . . , xn) is given by a convergent

power series. Then these same power series extend the definition of

V to an analytic map of Cn to itself, and we are back to the situation

above. (In fact, this is just the special case of what we considered

above when the coefficients of the power series are all real.) Of course,

if we consider only the solutions of this “complexified” ODE whose

initial conditions z0 are real and also restrict the time parameter τ

to real values, then we get the solutions of the original real equation.

So what we learn from this excursion to Cn and back is that when

the right-hand side of the ODE dx
dt = V (x) is an analytic function of

x, then the solutions are also analytic functions of the time and the

initial conditions.

This complexification trick is already useful in the simple case

that the vector field V is linear, i.e., when Vi(x) =
∑n

i Aijxj for some

n×n real matrix A. The reason is that the characteristic polynomial

of A, P (λ) = det(A − λI), always factors into linear factors over C,

but not necessarily over R. In particular, if P has distinct roots, then

it is diagonalizable over C and it is trivial to write down the solutions

of the IVP in an eigenbasis. We will explore this in detail in Chapter

2 on linear ODEs.

1.7. Invariance Properties of Flows

In this section we suppose that V is some complete vector field on Rn

and that φt is the flow on Rn that it generates. For many purposes

it is important to know what things are “preserved” (i.e., left fixed

or “invariant”) under a flow.

For example, the function F : Rn → R is said to be invariant

under the flow (or to be a “constant of the motion”) if F ◦φt = F for

all t. Note that this just means that each solution curve σp lies on

the level surface F = F (p) of the function F . (In particular, in case

n = 2, where the level “surfaces” are level curves, the solution curves

will in general be entire connected components of these curves.)
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�Exercise 1–22. Show that a differentiable function F is a con-

stant of the motion if and only if its directional derivative at any

point x in the direction V (x) is zero, i.e.,
∑

k
∂F (x)
∂xk

Vk(x) = 0.

The flow is called isometric (or distance preserving) if for all

points p, q in Rn and all times t, ‖φt(p)− φt(q)‖ = ‖p− q‖, and it is

called volume preserving if for all open sets O of Rn, the volume of

φt(O) equals the volume of O.

Given a linear map B : Rn → Rn, we get a bilinear map B̂ :

Rn ×Rn → R by B̂(u, v) = 〈Bu, v〉, where 〈Bu, v〉 is just the inner

product (or dot product) of Bu and v. We say that the flow preserves

the bilinear form B̂ if B̂((Dφt)x(u), (Dφt)x(v)) = B̂(u, v) for all u, v

in Rn and all x in Rn.

Here, the linear map D(φt)x : Rn → Rn is the differential of φt

at x; i.e., if the components of φt(x) are Φi(x, t), then the matrix of

D(φt)x is just the Jacobian matrix ∂Φi(x,t)
∂xj

. We will denote the de-

terminant of this latter matrix (the Jacobian determinant) by J(x, t).

We note that because φ0(x) = x, ∂Φi(x,0)
∂xj

is the identity matrix, and

it follows that J(x, 0) = 1.

�Exercise 1–23. Since, by definition, t �→ φt(x) is a solution of
dx
dt = V (x), ∂Φi(x,t)

∂t = Vi(φt(x)). Using this, deduce that ∂
∂t

∂Φi(x,t)
∂xj

=
∑

k
∂Vi(φt(x))

∂xk

∂Φk(x,t)
∂xj

and in particular that
(

∂
∂t

)
t=0

∂Φi(x,t)
∂xj

= ∂Vi(x)
∂xj

.

�Exercise 1–24. We define a scalar function div(V ), the diver-

gence of V , by div(V ) :=
∑

i
∂Vi

∂xi
. Using the formula for the derivative

of a determinant, show that
(

∂
∂t

)
t=0

J(x, t) = div(V )(x).

�Exercise 1–25. Now, using the “change of variable formula” for

an n-dimensional integral, you should be able to show that the flow

generated by V is volume preserving if and only if div(V ) is identically

zero. Hint: You will need to use the group property, φt+s = φt ◦ φs.

�Exercise 1–26. Let Bij denote the matrix of the linear map B.

Show that a flow preserves B̂ if and only if
∑

k

(
Bik

∂Vk

∂xj
+ ∂Vk

∂xi
Bkj

)
=

0. Show that the flow is isometric if and only if it preserves Î (i.e.,
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the inner product) and hence if and only if the matrix ∂Vi

∂xj
is every-

where skew-symmetric. Show that isometric flows are also measure

preserving.

�Exercise 1–27. Show that the translation flows generated by con-

stant vector fields are isometric and also that the flow generated by

a linear vector field V (x) = Ax is isometric if and only if A is skew-

adjoint. Conversely show that if V (x) is a vector field generating a

one-parameter group of isometries of Rn, then V (x) = v+Ax, where

v is a point of Rn and A is a skew-adjoint linear map of Rn. Hint:

Show that ∂2Vi

∂xj∂xk
vanishes identically.


