
Appendix K

The FFT

K.1. WHAT it is, WHERE it is used, and WHY.

The Fast Fourier Transform, or FFT, is an efficient algorithm
for calculating the Discrete Fourier Transform, or DFT. What is the
DFT, and why do we want to calculate it, efficiently or otherwise?
There are actually many DFTs and corresponding FFTs. For a nat-
ural number N , the N -point DFT transforms a vector of N complex

numbers, f , into another vector of N complex numbers, f̂ . We will

usually suppress the explicit dependence of f̂ on N , except when we
use a relationship between DFTs of different sizes to develop the FFT
algorithm.

If the components of f are interpreted as the values of a signal at

equally spaced points in space or time, the components of f̂ are the
coefficients of components of f having N equally spaced frequencies,
such as the level indicators on an audio-system equalizer. The rea-

sons for wanting to compute f̂ are many and varied. One important
reason is that, for the purpose of solving differential equations, the
equally spaced values of the individual frequency components form
an orthonormal basis

fk, k = 0, . . . , N − 1

of eigenvectors for a large family of matrices that arise in approx-
imating constant coefficient differential differential operators with
2π−periodic boundary conditions. If we denote the grid-spacing by
h = 2π

N , put i =
√
−1, and if the components of the basis vector fk

are defined by

fk,j := exp(ikjh), j = 0, . . . , N − 1, (1)

then these vectors satisfy the orthogonality relations:

< fk, fl >:=
1

N

N−1
∑

j=0

fk,jfl,j = δk,l (2)

1

2 WHAT it is, WHERE it is used, and WHY.

where
δk,l = 0 for k 6= l and δk,l = 1 for k = l.

The eigenvector property referred to above can be expressed as:

Afk = λA,k fk, λA,k ∈ C (3)

where A is any matrix whose entries satisfy

aj,k = aj+m mod N,k+m mod N . (4)

An example of such an A is the centered second difference approx-
imation of the second derivative with periodic boundary conditions
on a grid of N equally spaced points:

1

h2
(T− 2I+T−1), h =

2π

N
, (5)

where T is the the cyclic translation of components

Tzj = z(j+1 mod N), (6)

In other words, using a fixed orthonormal basis (the Fourier basis) the
DFT diagonalizes any operator on the discrete unit circle group that
commutes with translations . These properties of the Fourier bases
{fk} may be verified directly using the geometric difference identity

Tfk = eikhfk

and the geometric summation identity

N−1
∑

j=0

ei(k−l)jh =
ei(k−l)Nh − 1

ei(k−l)h − 1
=

e2πi(k−l) − 1

ei(k−l)h − 1
= 0

on the discrete circle group. The latter may be seen as a consequence
of the former, and in a companion appendix, we also show that both
are specials cases of a beautiful and far-reaching construction of or-
thogonal bases of eigenvectors for functions on any abelian group !
For this reason, even those familiar with the Fourier theory should
find the treatment there useful and enlightening. References are also
provided to generalizations of the Fourier transforms to non-abelian

WHAT it is, WHERE it is used, and WHY. 3

groups and other spaces, such as Radon transforms used in computed
tomography (CAT) scans.

Since we wish to define the N -point DFT so that

f =

N−1
∑

k=0

f̂kfk, (6)

we can form the inner product of (6) with each basis vector and apply
the orthogonality properties (2) to obtain the most straightforward
definition of the DFT,

f̂k =
1

N

N−1
∑

j=0

fjfk,j , (7)

as a linear mapping: f ∈ CN 7→ f̂ ∈ CN . If we let

ω = ωN = exp(−ih) = e−2πi/N , (8)

denote a primitive Nth root of unity, and define the matrix

F = FN = {Fkj} = exp(−ikjh) = ωkj , 0 ≤ j, k ≤ N − 1, (9)

then

f̂ =
1

N
Ff (10)

is the matrix form of the DFT in the standard basis for CN .

Figure F.1. The Conjugate Discrete Circle Group with 23 = 8 elements.

4 WHAT it is, WHERE it is used, and WHY.

While the sign convention we have used for the exponent in the
definition of ω conveniently minimizes negative signs when working
with F, it is important to be aware that the opposite convention is also
useful and common when focusing on the Fourier basis vectors rather
then their conjugates, e.g., in the discussion of symmetric indexing
below accompanying figure F.2.

The inverse discrete Fourier Transform, or IDFT is therefore

f̂ 7→ f = F∗f̂ = F
¯̂
f . (10)

This shows that we can use the DFT (and therefore the FFT) to
compute the inverse DFT just by changing −i to i in the definition
of ω in our implementation, by pre- and post-conjugating the input
and output, or reversing the input modulo N , and omitting the post-

normalization step. We may describe the inverse DFT of ĥ as “the

pointwise values of the vector whose (DFT) coefficients are ĥ”, and
the DFT of h as “the coefficients of the vector whose pointwise values
are h”. In some conventions, the factor of 1

N in the DFT appears
instead with the inverse transform. Alternatively, it can be divided
into factors of 1√

N
in each direction, which makes both transforms

unitary (i.e., norms of vectors are preserved in both directions rather
than amplified in one and diminished in the other.)

If we use the definition (7) directly, then the calculation of the
DFT involves N2 complex multiplications. When N is a power of
2, the FFT uses patterns in the components of FN to reduce this to
1
2N log2 N complex multiplications and comparably many additions.
For small values of N this is not a major saving, but when N is the
number of points in a 1283 grid for a three-dimensional problem, it
becomes a huge saving—on the order of a billion for one transform—
and that saving is repeated every second in numerous digital signal
processing applications, literally around the world. Below are the first
few examples of such FN . For N = 8, ω2 = i, and in general, ωN = 1
so ωjk = ω(jk mod N). The matrix F8 can also be rewritten in a form
that foreshadows the recursive relation among these matrices that is
the heart of the FFT.

F2 =

(

1 1
1 −1

)

, F4 =







1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i







WHAT it is, WHERE it is used, and WHY. 5

F8 =























1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω























To better understand the significance of both the eigenvector and
orthogonality properties of the basis associated with the FFT, let
A be an arbitrary N × N matrix and consider the computational
effort that is contained in the symbolic formulas for solutions of the
differential equation IVP

du

dt
= Au, u(0) = f , (11)

and its approximation using Euler’s method,

um+1 = (I+∆tA)um, u0 = f . (12)

The solution of the differential equation is given by:

u(t) = exp(tA)f =

∞
∑

m=0

(tA)m

m!
, (13)

which can be computed by calculating a sufficient number of terms
in the exponential series to achieve the desired accuracy. Recall that
each matrix-matrix product requires O(N3) multiplications per term:

1

m
(tA)((tA)m−1). (14)

The saving that might be obtained by computing only matrix-vector
products (O(N3)) would be beneficial only if we were interested in
one particular initial vector f . Directly, the solution of the Euler
approximation is given by

um = (I+∆tA)mf . (15)

6 WHAT it is, WHERE it is used, and WHY.

We can explicitly calculate (I+∆tA)m with mN3 complex multipli-
cations, or mN2 to calculate (I+∆tA)mf for a particular f . But it is
far more efficient and informative to compute the powers and expo-
nential of A using a basis of eigenvectors and generalized eigenvectors
that is guaranteed to exist. For our current purposes, we suppose A

has N linearly independent eigenvectors e0, . . . , eN−1, so that if S is
the N ×N matrix whose kth column is ek, then

AS = SΛ.

where
Λ = diag{λ1, . . . , λN}.

To facilitate the analogy with the DFT, we write ũ = S−1u, so that
u = Sũ expresses u as a linear combination of eigenvectors, with the
components of ũ as coefficients. With this notation, Ãu = Λũ, so the
differential equation becomes

dũ

dt
= Λũ, ũ(0) = f̃ , (16)

and its Euler’s method approximation,

ũm+1 = (I+∆tΛ)ũm, ũ0 = f̃ . (17)

In this form, the solution of the differential equation becomes

ũ(t) = exp(tΛ)f̃ , (18)

whose calculation only requires N complex exponentials and N com-
plex multiplications, and the solution of the Euler approximation is

ũm = (I+∆tΛ)mf̃ , (19)

whose calculation only requires N complex powers and N complex
multiplications. To express the solution of our equations in terms of
the original standard basis, we form linear combinations of the basis
vectors: u(t) = Sũ(t) and um = Sũm.

What are the hidden costs of these formulas? For a general S, it
requires O(N3) to compute ũ, either by finding S−1 explicitly, or by
finding the LU decomposition of S in order to solve u = Sũ. Once

WHAT it is, WHERE it is used, and WHY. 7

these have been computed however, each additional transform only
requires O(N2) arithmetic operations. But when the eigenvectors
that form the columns of S are orthogonal, the O(N3) initial step
is unnecessary since, up to a scaling, we only need to transpose and
conjugate S to find S−1. The final step, converting back to the orig-
inal basis, involves the matrix-vector product Sũ, requiring O(N2)
complex multiplications, even for a non-orthogonal S.

If A is any matrix that satisfies (4) (i.e., any matrix that com-
mutes with the group of translations generated by the T of (6)),
then the DFT is a particular example of the above construction, with
S−1 = 1

NFN . In other words, the matrix S = F∗
N diagonalizes A,

S∗S = NI (so 1√
N
S is unitary), and for this S, ũ = û. The inversion

is just a consequence of the convention of defining S as the matrix
whose columns are the eigenbasis, rather than its inverse, or equiv-
alently, defining FN as the matrix whose rows are the conjugates of
the eigenbasis, rather than its inverse. From the above considerations,
we see that even without the FFT, there are several ways in which
the DFT substantially reduces the complexity of solving equations
involving the matrices A that it diagonalizes,

The availability of explicit formulas for an orthonormal basis of
eigenvectors whose conjugates make up the rows of the DFT ma-
trix, immediately reduces the considerable computational effort that
would otherwise be required to find eigenvalues and eigenvectors to
the much simpler one of calculating O(N2) complex exponentials.
Then, in addition, orthogonality reduces from O(N3) to O(N2) the
number of arithmetic operations needed in constructing the trans-
form that implements the change of basis to the eigenvector basis.
In summary, the existence of the orthonormal eigenvectors makes it
possible to compute useful functions of the matrix using only O(N2)
scalar evaluations of the same functions.

The FFT takes a further simplification, eliminating the O(N2)
steps from the process, and reducing them, and the overall complexity,
to O(N logN). As we will see below, this is because the FFT even
makes it unnecessary to explicitly compute the discrete Fourier basis
vectors and the N2 entries of FN . If this were necessary, it would
involve calculating N2 complex exponentials. A clue to the possibility
of the FFT is the fact that FN only containsN/2 distinct components,
up to sign, the maximum number of complex exponentials that are
needed to compute the N -point DFT-FFT. Indeed, no trigonometric

8 WHAT it is, WHERE it is used, and WHY.

or complex exponential evaluations should be required at all, since
these values can be computed efficiently using only square roots and
division by repeated bisection and normalization of edges 2m−gons
inscribed in the unit circle, starting with the square with vertices at
the standard unit vectors! It makes sense to compute these values
once and for all outside any FFT implementation, and store them for
lookup each time they are needed in every call of the FFT.

A related application of the DFT and FFT is for performing fast
convolution. If we let z be the vector in CN whose components are

zj = eijh, j = 0, . . . , N − 1,

then we can view the DFTs and discrete Fourier representation of
vectors f and g as discrete polynomial coefficients and expansions,

f =
N−1
∑

k=0

f̂kz
k

and

g =

N−1
∑

k=0

ĝkz
k.

Just as we multiply ordinary polynomials by convolution of their co-
efficients, the expansion of the pointwise product is

h = {hj = fjgj} =

N−1
∑

k=0

ĥkz
k,

where
ĥk =

∑

l+m=k mod N

f̂lĝm (18)

We call the expression on the right the cyclic (or circular) convolution

of f̂ and ĝ, and denote and rewrite it as

f̂ ∗N ĝ :=

N−1
∑

l=0

f̂lĝ(k−l mod N). (19)

Therefore, the inverse DFT of ĥ = f̂ ∗N ĝ is h = fg, Applying the
DFT to both sides of this statement, we may write

(fg)̂ = f̂ ∗N ĝ. (20)

WHAT it is, WHERE it is used, and WHY. 9

Given the similarity between the forward and inverse DFT, with mi-
nor modification we can check that

(f ∗N g)̂ = N f̂ ĝ (21)

and we see that the DFT changes multiplication to convolution and
vice versa. Whether the factor N appears in (20) or in (21) depends
on whether the normalization factor 1

N occurs in the definition of the
forward or inverse DFT.

Since the circular convolution operation is bilinear and the ‘delta
function’ < 1, 0, . . . , 0 > acts as an identity for it, the solutions of the
difference equations above can be represented as circular convolutions
of the given initial data with a ‘fundamental solution’ whose initial
data is a ‘delta function’. In this way, the acceleration of computing
solutions discussed above can be viewed as using the FFT as a tool
for performing ‘fast convolution’. Instead of performing straightfor-
ward convolution, a task that requires N2 multiplications, we can
transform, multiply the tranforms pointwise, and inverse transfom,
to reduce the number of multiplications to N(1 + log2 N).

Uses for the fast convolution go far beyond accelerating the solu-
tion of differential equations. For example, it can be used to reduce
the cost of multiplying two numbers with millions of digits from tril-
lions of individual digit multiplications back to millions. But we will
leave such applications to other treatments.

Before proceeding with the FFT itself, there is a final point that
deserves mention; namely the intimate relation between the Fourier

transform coefficient f̂(k) of a continuous 2π-periodic function f and
the discrete Fourier transform coefficient fk of the the vector f ob-
tained by sampling f(x) at the N equi-spaced points, xj = jh;
h = 2π/N, j = 0, . . . , N − 1. If we compare their definitions:

f̂(k) =
1

2π

∫ 2π

0

f(x)e−ikx dx (22)

and (7),

fk =
1

N

N−1
∑

j=0

f(xj)e
−ikxj ,

and use the periodicity of f , we see that the sum that gives fk is
precisely the Trapezoidal Method approximation of the integral that

10 WHAT it is, WHERE it is used, and WHY.

gives f̂(k). Now in general, the error En(f, a, b) in the N -subinterval

Trapezoidal approximation of an integral
∫ b

a f(x) dx satisfies the es-
timate (see, e.g., [1]):

En(f, a, b) = − (b− a)3

12N2
f ′′(ξ) (23)

for some ξ ∈ (a, b), and by constructing a Riemann sum from this
estimate, we also get the asymptotic error estimate

En(f, a, b) ∼ − (b− a)2

12N2
(f ′(b)− f ′(a)) +O(N−3). (24)

When f is periodic, the leading order term vanishes, and in fact the
Euler-Maclaurin summation formula can be used to show that the
next, and all higher order terms also have coefficients that vanish for
periodic f . In other words, as the number of discretization

points, N , tends to infinity, the difference between a con-

tinuous Fourier coefficient and the corresponding discrete

Fourier coefficient tend to zero faster than any negative

power of N . This order of convergence is often called “spectral
accuracy”, or informally, “infinite-order accuracy”.

Another approach to this comparison can be obtained by consid-
ering f(x) as the sum of its convergent Fourier series:

f(x) =
∞
∑

n=−∞
f̂(n)einx,

and again comparing the definitions of f̂(k) and fk:

f̂(k) =
1

2π

∫ 2π

0

(∞
∑

n=−∞
f̂(n)einx

)

e−ikx dx (25)

fk =
1

N

N−1
∑

j=0

(∞
∑

n=−∞
f̂(n)einxj

)

e−ikxj . (26)

The observation that allows us to relate these expressions is that if
the infinite sum is replaced by a finite sum

fN(x) =

n≤N/2
∑

n>−N/2

f̂(n)einx,

WHAT it is, WHERE it is used, and WHY. 11

they become identical, simply because the given range is a different
form of the indices (0, . . . , N−1 mod N) for the discrete Fourier ba-
sis. Thus, the only difference arises from the contributions from n out-
side of this range. Components corresponding to those n contribute
nothing to the continuous Fourier coefficient, since when |n| > N and
|k| ≤ N , k 6= n and einx is orthogonal to eikx. However, for |n| > N ,
when einx is sampled on the N point grid xj , the resulting vector is
not orthogonal to the vectors discrete Fourier basis vectors that are
obtained by sampling eikx on that grid. In fact it is identical to one
of them ! This is because if k = n + mN = n mod N , then using
Nh = 2π, we have eikxj = ei(n+mN)jh = einjhe2πim = einxj , a rela-
tion known as aliasing . We say that a component of f with n beyond
the resolution of the grid is ‘aliased’ onto the grid as a contribution
to the component within the resolution of the grid whose index is
congruent to the original component modulo N . So, where does the
“infinite order accuracy” observed using the Trapezoidal approxima-
tion point of view come from with this approach? We have shown in
the accompanying appendix on Fourier analysis, that the magnitude

of Fourier components f̂(n) of a smooth function f also tend to zero
faster than any power of n, and from this it is not difficult to show
that the aliasing error arising from all components whose indices ex-
ceed N also decays faster than any power of N . That is, since the
individual Fourier coefficient amplitudes of a smooth function decay
faster than any negative power of the frequency, i.e.,

|f̂(n±mN)| ≤ C|n+mN |−p ≤ CN−pm−p, m = 1, 2, . . . (27)

then so does the sum of all of these magnitudes outside any frequency
interval:

∞
∑

m=1

|f̂(n±mN)| ≤ C′N−p. (28)

The fact that the finite sum

fN(x) =

n≤N/2
∑

n>−N/2

f̂(n)einx, (29)

can be reconstructed exactly from its samples at the N equi-spaced
points (with spacing h = 2π/N), xj = jh, j = 0, . . . , N − 1, is

12 WHAT it is, WHERE it is used, and WHY.

an almost trivial special case of the so-called sampling theorem that
goes by many names including Whittaker, Shannon, Nyquist, Ko-
tel’nikov, Raabe, and Someya. A modern version states that if f is a
smooth function that is “band-limited”, in the sense that its Fourier
transform is supported on the open interval (−K,K), then f can
be reconstructed exactly from its samples at equally spaced points
f(mT), m ∈ Z, where T = π/K is called the sampling interval and
thus fs := K/π is the sampling rate. The bound on the frequency
support K = πfs is often called the Nyquist frequency. For our finite
sum, we check that T = π/(N/2) = 2π/N , exactly our h above. There
are many refinements of this result, among them the case when the
band limit is not strict and frequencies at the band limit are present.

The sampling theorem not only gives a relation between the sup-
port bound (band limit) and the sampling interval that permits exact
reconstruction from equi-spaced samples, it also provides an algo-
rithm for performing this reconstruction. For the finite Fourier series
case, changing the order of summation of the forward and inverse
discrete Fourier transform yields

f(x) =

N−1
∑

j=0

f(xj)

(

1

N

N−1
∑

k=0

eik(x−xj)

)

=

j≤N/2
∑

j>−N/2

f(xj)δN (x− xj)h

(30)
where as usual, h = 2π

N and xj = jh, and

δN (x) =
1

2π

n≤N/2
∑

n>−N/2

eikx. (31)

We can see this as the discrete approximation of the fact that the
“δ−function” (evaluation at x = 0) is the identity with respect to
convolutions, i.e., f = f ∗ δ, with δN a ‘delta-sequence’ that gives
such an approximation of the identity. In the continuous case, the
reconstruction aspect of the sampling theorem states that if

f(t) =

∫

|k|<K

f̂(k)eikt dk (32)

then

f(t) =

∞
∑

j=−∞
f(tj)S(K(t− tj)) (33)

WHAT it is, WHERE it is used, and WHY. 13

where h = π
K , tj = jh, and

S(t) = sinc(t) :=
sin(t)

t
for t 6= 0 and sinc(0) = 1. (34)

The function S is known as the Whittaker cardinal function (or just
the ‘sinc’-function). The analogy with a Lagrange interpolation poly-
nomial is apparent, since in addition to sinc(0) = 1, sinc(n) = 0 for
any nonzero integer n. The fact that

∑∞
j=−∞ f(tj)S(K(t − tj)) in-

terpolates f at each tj is immediate from this. Of course there are
infinitely many smooth functions that equal S on the integers. What
is special among such functions about S is the fact that it is band
limited, and in particular, it is the Fourier transform of the cutoff
function

Ŝ(k) = 1 for |k| ≤ π, and Ŝ(k) = 0 for |k| > π. (35)

Since the shifts t−tj correspond to phase shifts of Fourier coefficients,
the functions S(K(t−tj)) are uniformly band limited, as is any linear
combination. By subtraction, we can state the samping theorem in
the following form: If a function vanishes on an infinite set of equi-
spaced points, then a sufficient condition for it to be zero everywhere
is that it is band limited with a bandwidth determined by interpreting
the spacing of the points as a sampling frequency.

To prove the sampling theorem, the band-limited transform f̂(k)

may be extended periodically to f̂P (k), then expanded as the sum of
the resulting Fourier series, and the result must be identical the the

(non-periodic) Fourier representation of f̂(k) = Ŝ(k)f̂P (k) on the line.
Since Fourier transform take multiplication to convolution, and vice
versa, by interchanging an integration and a summation in analogy
with the interchange of summations in the discrete case we can show
the equivalence of the band-limited Fourier transform product

∫

|k|<K

f̂(k)eikt dk =

∫ +∞

−∞
Ŝ(

kπ

K
)f̂(k)eikt dk. (36)

and the sampling convolution expansion (33).

The analogy with Lagrange polynomials mentioned above can
even be extended to the (infinite) product representation

sinc(x) = Πn∈Z, n6=0(1−
x2

n2
). (36)

Formally, the product on the right is also zero at each non-zero integer
n, and one at zero. Also formally, the coefficient of x2 on the right is

14 WHAT it is, WHERE it is used, and WHY.

−∑∞
n=1

1
n2 while the corresponding coefficient in the Taylor Maclau-

rin series of 1
πx sin(πx) is − 1

6πx(πx)
3 = −π2

6 . These observations can

be made rigorous to show that
∑∞

n=1
1
n2 = π2

6 , e.g., in [Marshall].

We conclude this section with a ‘footnote’ on the indexing of N
frequencies or grid points in the form −N/2 ≤ N/2 that is symmetric
about zero, for which there are two cases. When N odd, equality is
never satisfied at the upper limit, but whenN is even, it is. In contrast
with the asymmetric indexing from 0 to N − 1, symmetric indexing
possesses the favorable property that the mapping from the discrete
basis vectors einxj to the corresponding continuous basis functions
einx is close under taking the real and imaginary parts. For the
same reason, the symmetric indexing is the correct one to use when
associating a discrete basis vector with an eigenvalue of a linear oper-
ator that it diagonalizes. For instance, when using a spectral-Fourier

method to approximate the second derivative operator A = d2

dx2 for

which Aeikx = −k2eikx, and obtaining a discrete basis fk by sampling
eikx at the N = 2J points xj = 2πj/N , both ei(N−1)x and ei(−1)x are
represented by the same fN−1 = f−1. So couldn’t one assign it either
the eigenvalue λN−1 = −(N − 1)2, or λ−1 = −(−1)2? But for the
approximation to converge to the analytical solution, not skipping
low frequency modes, the N − 1 mode must patiently wait its turn
which will come as the number of discretization points is increased.

Figure F.2. Indexing Symmetric and Asymmetric About n = 0 .

⊲Exercise K–1. What are the eigenvalues and eigenvectors of the
DFT, and how are they related to eigenvalues and eigenvectors of the
Fourier Transform? (See the references for discussions of this topic.)

WHAT it is, WHERE it is used, and WHY. 15

16 How The FFT is Computed

K.2. How The FFT is Computed

The most popular and easiest to understand family of N -point
FFTs are those for which N is a power of 2, say N = 2ℓ. We
will restrict our attention to this case, and refer the reader to other
treatments for variations on the FFT for general N , data that are
real, even/odd symmetric, etc. In the case of interest, the algorithm
is based on redundancy in the calculation of the coefficients with
k < N/2, and those with k ≥ N/2. This is expressed in relations
among the coefficients of the matrix FN , involving those that multi-
ply the components of f with even indices, and those that multiply
the components with odd indices. In terms of the contributions from
the components of f with even and odd indices,

fe
j : = f2j , j = 0, . . . ,

N

2
− 1,

fo
j : = f2j+1, j = 0, . . . ,

N

2
− 1.

The pattern is expressed in the following identities:

f̂k = f̂e
k + e−ikhf̂o

k (1)

f̂k+N/2 = f̂e
k − e−ikhf̂o

k

where h = 2π/N and the transforms on the right hand side are N/2
point transforms, Collectively, these two computations are known as
the butterfly, and the e−ikh factors are known as ‘twiddle’ factors. In
block matrix form in terms of the matrix FN ,

FNPN =

(

FN/2 +DNFN/2

FN/2 −DNFN/2

)

. (2)

where DN is a diagonal N/2×N/2 matrix of ‘twiddle factors’

DN = diag{1, ω, . . . , ωN
2
−1}, (3)

and right multiplication by the N ×N permutation matrix

PN = {p2i,i = 1, 0 ≤ i < N/2, p2(i−N/2)+1,i = 1, N/2 ≤ i < N},
(4)

How The FFT is Computed 17

permutes all columns of FN with even indices in order ahead of
columns with odd indices. Here it is in gory detail for the case N = 8:

F8P8 =























1 1 1 1 1 1 1 1
1 ω −i ω3 −1 −ω i −ω3

1 ω2 −1 −ω2 1 ω2 −1 −ω2

1 ω3 i ω −1 −ω3 −i −ω
1 −1 1 −1 1 −1 1 −1
1 −ω −i −ω3 −1 ω i ω3

1 −ω2 −1 ω2 1 −ω2 −1 ω2

1 −ω3 i −ω −1 ω3 −i ω













































1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1























=





























1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i













1 1 1 1
ω ω3 −ω −ω3

ω2 −ω2 ω2 −ω2

ω3 ω −ω3 −ω













1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i













−1 −1 −1 −1
−ω −ω3 ω ω3

−ω2 ω2 −ω2 ω2

−ω3 −ω ω3 ω



































1 1 1 1
ω ω3 −ω −ω3

ω2 −ω2 ω2 −ω2

ω3 ω −ω3 −ω






=







1 0 0 0
0 ω 0 0
0 0 ω2 0
0 0 0 ω3













1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i







= D8F4






−1 −1 −1 −1
−ω −ω3 ω ω3

−ω2 ω2 −ω2 ω2

−ω3 −ω ω3 ω






= −







1 1 1 1
ω ω3 −ω −ω3

ω2 −ω2 ω2 −ω2

ω3 ω −ω3 −ω






= −D8F4

The permutation can be inverted to write FN as the block matrix
following P−1

N , where P−1
N permutes the components of the input

vector f in the same way as PN permutes the columns of FN , placing

18 How The FFT is Computed

those with even indices in order ahead of those with odd indices:

P−1
N =



























1 0 0 . . .
0 0 1 0 0 . . .
0 0 0 0 1 0 . . .
...
0 1 0 0 0 . . .
0 0 0 1 0 . . .
0 0 0 0 0 1 0 . . .
...



























To confirm (1)–(4), we first check that the second half of each
evenly indexed column of FN repeats the first half. Using ωN = 1 we
check that for column indices 2l, l = 0, . . . , N/2− 1, and row indices
k = 0, . . . , N/2− 1,

fk+N/2,2l = ω(k+N/2)(2l) = ω2kl+Nl = ωk(2l) = fk,2l. (5)

Since h = 2π/N ,

ω2
N = e−i(2h) = e−i(2(2π/N)) = e−i(2π/(N/2)) = ωN/2 (6)

and therefore these N/2 × N/2 components fk,2l of these repeated
half-columns are exactly the k, l entries of FN/2! This repetition of
the same matrix multiplying the same components of f already saves

us half of the work of computing half of the components of f̂ .

A similar saving can be found when calculating the contributions
from components of f with odd indices. The second half of the odd
index columns of FN repeat the first half except for a change of sign.

fk+N/2,2l+1 = ω(k+N/2)(2l+1) = ωk(2l+1)ωN/2(2l+1)

= fk,2l+1ω
Nl+N/2 = fk,2l+1ω

N/2

= −fk,2l+1. (7)

And while they are not simply copies of FN/2, they only differ from
the even columns that are by the diagonal matrix DN .

fk,2l+1 = ωk(2l+1) = ω2klωk = ωkfk,2l. (8)

How The FFT is Computed 19

The pattern (1, 2) that is at the heart of the FFT is known as the
butterfly.

Figure F.2. The Butterfly Operation.

In chaotic dynamics, the butterfly represents the small change in
initial conditions to which a system is sensitive, but here it refers to
the crisscross nature of the calculation expressed by (1, 2). In Figure
F.2, The positive contributions to the k and k+N/2 components of the
N -point transform from the k component of the N/2-point transform
of the components with even indices are represented by solid lines.
Forming the product of the twiddle factor and the k component of the
N/2-point transform of the components with odd indices is indicated
by the asterisk (*). The positive and negative contributions of the
result to the k and k+N/2 components of the N -point transform are
indicated by solid and dashed lines, respectively.

As a consequence of (1, 2), all of the multiplications that are nec-
essary to compute the components of FN f for k ≥ N/2 have already
been performed in computing the components for k < N/2. Further-
more, these multiplications come in the form of two DFTs with half
the number or points, plus N/2 multiplications by the scalars in the
two DN matrices. Because of this, and the fact that N is a power of
2, the same decomposition may be performed to evaluate those DFTs
more efficiently, and so on recursively on the decreasing sequence of
half-size DFTs. In terms of number of multiplications, if M(ℓ) is the
number of multiplications required for an FFT with N = 2ℓ points,
the butterfly structure shows that

M(ℓ) = 2 ∗M(ℓ− 1) + 2ℓ−1. (9)

Since no multiplications are required to perform a two point DFT,

(

1 1
1 −1

)(

u0

u1

)

=

(

u0 + u1

u0 − u1

)

,

20 How The FFT is Computed

M(1) = 0, and we can confirm that

M(2) = 2(0) + 2 = 2 = 1(21),

M(3) = 2(2) + 4 = 8 = 2(22),

M(3) = 2(8) + 8 = 24 = 3(23).

In general, we can prove by induction on ℓ that

M(ℓ) = ℓ2ℓ−1 = (N/2) log2(N).

We have already checked several initial cases. To confirm the induc-
tion step, we check that the induction hypothesis assumption for the
case ℓ− 1

M(ℓ− 1) = (ℓ− 1)2ℓ−2

together with (2) imply the case ℓ:

M(ℓ) = 2(ℓ− 1)2ℓ−2 + 2ℓ−1 = (ℓ− 1)2ℓ−1 + 2ℓ−1 = ℓ2ℓ−1.

There is approximately one addition and one subtraction associated
with each twiddle factor multiplication, so there are about ℓ2ℓ =
N log2(N) additions required in an FFT of order N . When N is
large, this represents a spectacular saving in comparison to the N2

multiplications required without the FFT. For example, when N =
220 = 1, 048, 576, the ratio is on the order or fifty thousand times
fewer operations!

Another way to see this result is to note that ultimately, the only
multiplications ever performed are the multiplications by the nonzero
twiddle factor components of the D matrices at each stage. At the
FN stage, there are 2 ∗ N/2 such multiplications to combine two
transforms of size N/2. But each of these transforms are obtained by
combining two transforms of sizeN/4, so altogether four transforms of
size N/4, so again N twiddle factor multiplications. After that, there
are eight transforms of sizes N/8, and so on, for a total of N twiddle
factor multiplications over log2(N)−1 levels, since no multiplications
are required at the N = 2, N = 1 level.

In practice, this is implemented by first performing the collective
permutation of components to start with N/2 two-point DFTs, then
combine these simultaneously to take advantage of common twiddle
factors into N/4 four point transforms, and so on up the chain to the

How The FFT is Computed 21

final combination of two N/2 point transforms into the single N point
transform, FN . If the indices of the components are represented in
binary, the first level permutation at the first level separates the com-
ponents with even indices ending in 0 from those ending in 1. At the
next level subdivides each of these according to whether their second
to last bits are 0 or 1. Altogether, this corresponds to arranging the
components in reverse binary order, i.e., numerical order if we read
the bits of each index from the right, the least significant bit, as op-
posed to the usual ordering from the left, the most significant bit. We
just reverse the direction of significance. In the following table, we
demonstrate the subdivisions for N = 8 points. The first column con-
tains the indices in forward binary order, the second column contains
the even ones indices before the odd indices, and the third contains
the even indices among the even indices, the odd among the even, the
even among the odd, and finally the odd among the odd.
1. 2. 3.
000 000 000
001 010 100
010 100 010
011 110 110
100 001 001
101 011 101
110 101 011
111 111 111

Each pattern in the last column is the reverse of the correspond-
ing pattern in the first column, so we can implement the necessary
rearrangement of the components of f by implementng a reverse bi-
nary order counter r(i), and transpose ui and ur(i) whenever r(i) > i
to avoid transposing any component with itself, or two components
twice. The following C code implements this first part of the FFT:

i=0; /* binary add 1 to i in mirror */

for (j=1; j< N; j++) { /* count forward with j */

bit=N/2; /* most significant */

while (i >= bit) { /* until you encounter 0,

i=i-bit; /* change 1s to 0s */

bit=bit/2; } /* next most significant */

i=i+bit; /* when you do, change 0 to 1 */

if (i<j) { /* swap distinct pairs once */

temp=c[i]; c[i]=c[j]; c[j]=temp; } } /* next j */

22 How The FFT is Computed

After this rearrangement, the components needed when we put
transforms together appear at the correct indices. In other words, in
the final column, we want to put the components of the two point
transforms in the same two locations from which they were computed
In the next to last column, corresponding butterfly pairs within each
four point transform are also computed from values in the correspond-
ing locations. When these values are overwritten after they are used,
they are again in the proper locations to compute the butterfly pairs
of the next level transform.

This portion of the algorithm is implemented with a triply nested
loop. The outermost loop counts through i = 1, . . . , N stages of
putting together N

2i = 2N−i transforms of length 2i. Each of these

levels is implemented by the doubly nested loop through the 2i−1

butterfly pairings of points with a common twiddle factor, through
the 2N−i transforms. At this deepest level, the single butterfly multi-
plication and corresponding addition and subtraction are performed.

The following C code implements this second part of the FFT,
The code calls the complex addition, subtraction, and multiplication
functions Cadd, Csub, and Cmul defined in a library, complex.h, that
is also linked from the webpage.

numtrans=N;

sizetrans=1;

while (numtrans > 1) {
numtrans=numtrans/2; /* at each level, do half as many */

halfsize=sizetrans;

sizetrans=sizetrans*2; /* subtransforms of twice the size */

for (in=0; in<halfsize; in++) { /* index in each subtransform */

twiddle=twid[in*numtrans]; /* sharing common twiddle */

for (sub=0; sub< numtrans; sub++) { /* index of subtransform */

iplus=sub*sizetrans+in; /* indices for butterfly */

iminus=iplus+halfsize;

but1=c[iplus];

but2=Cmul(twiddle,c[iminus]); /* lower one gets twiddled */

c[iplus]=Cadd(but1,but2); /* butterfly */

c[iminus]=Csub(but1,but2); } } }

Many implementations, for the sake of being self-contained, sac-
rifice considerable efficiency and/or accuracy at this point by comput-
ing the twiddle factors ‘on the fly’ in their code. Since the exponential

How The FFT is Computed 23

twiddle factors must be included in self-contained code, they will be
recomputed each time the code is called. This will be quite wasteful
if one needs to call the FFT many times in a computation, since the
same twiddle factors are used in any FFT call with the same number
of points N . A remedy is to compute the twiddle factors once and
for all in an array that is placed outside the FFT routine, and simply
look up the proper factor as needed in the FFT. The following C code
implements computing these factors using a complex exponentiation
function Cexp that is also defined in the complex.h library:

pi=4.0*atan(1.0);

h=2.0*pi/N;

for (j=0; j< N/2; j++) twid[j]=Cexpi(-j*h);

As discussed earlier, these factors can be calculated without any
trigonometric function calls, using only addition, multiplication, di-
vision, and square roots by constructing inscribed 2ℓ-gons in the unit
circle using repeated bisection and scaling. The following C code
implements this calculation.

x[0]=1.0; x[1]=0.0; x[2]=-1.0; x[3]=0.0; x[4]=1.0;

y[0]=0.0; y[1]=1.0; y[2]=0.0; y[3]=-1.0; y[4]=0.0;

N=4;

for (i=0; i< logN-2; i++) {
for (j=0; j<N; i++) {
mx=x[i][j]+x[i][j+1];my=y[i][j]+y[i][j+1];

scale=1.0/pow(mx*mx+my*my,0.5);

x[i+1][2*j+1]=mx*scale; y[i+1][2*j+1] =my*scale;

x[i+1][2*j]=x[i][j]; y[i+1][2*j] =y[i][j];

x[i+1][2*N]=1.0; y[i+1][2*N] =0.0;

N+=N;

}}

Even if an implementation does compute the twiddle factors ‘on
the fly’, this can be performed more or less efficiently. Instead of
recomputing all of the twiddle factors for each subtransform level,
so the 22-point, 23-point, etc., until the 2N point twiddle factors are
computed. Since each of the subtranform twiddle factors are subsets
of the final 2N point twiddle factors, it would make sense to compute

24 How The FFT is Computed

these to begin with, and reduce computation by looking up subtrans-
form factors. This will be even more significant if each of the twid-
dle factors is calculated as a complex exponential (two trigonometric
evaluations). Most codes that calculate the twiddle factors internally
initialize with trigonometric calculations once at each level, then com-
pute the complex powers of the initial factor with multiplications and
square roots within the loop. This also has the potential disadvan-
tage of amplifying errors with the FFT each time it is iterated. For
accuracy as well as efficiency, in dedicated, repeated use it is advis-
able to calculate the N/2 twiddle factors that suffice for all levels and
every call to the FFT externally and accurately once and for all, and
implement the code so as to address them by lookup. Placing these
factors in memory locations that are rapidly accessible can accelerate
performance even further. For these and many other reasons, there
are computer chips dedicated to implementing this algorithm, and its
core arithmetic butterfly computation as efficiently as possible at the
hardware level.

