
Appendix L

Introduction to Fourier Methods

L.1. The Circle Group and its Characters

We will denote by S the unit circle in the complex plane:

S = {(x, y) ∈ R2 | x2 + y2 = 1}

= {(cos θ, sin θ) ∈ R2 | 0 ≤ θ < 2π}

= {z ∈ C | |z| = 1}

= {eiθ | 0 ≤ θ < 2π}.

We note that S is a group under multiplication, i.e., if z1 and z2 are
in S then so is z1z2. and if z = x + yi ∈ S then z̄ = x − yi also is
in S with zz̄ = z̄z = 1, so z̄ = z−1 = 1/z. In particular then, given
any function f defined on S, and any z0 in S, we can define another
function fz0 on S (called f translated by z0), by fz0(z) = f(zz0).
The set of piecewise continuous complex-valued functions on S will
be denoted by H(S).

The map κ : t 7→ eit is a continuous group homomorphism of
the additive group of real numbers, R, onto S, and so it induces a
homeomorphism and group isomorphism [t] 7→ eit of the compact
quotient group K := R/2πZ with S. Here [t] ∈ K of course denotes
the coset of the real number t, i.e., the set of all real numbers s
that differ from t by an integer multiple of 2π, and we note that
we can always choose a unique representative of [t] in [0, 2π). K
is an additive model for S, and this makes it more convenient for
some purposes. A function on K is clearly the “same thing” as a
2π-periodic function on R. In particular, the complex vector space
H2π(R) of piecewise continuous 2π-periodic complex-valued functions
on R can be identified with the space H(K) of piecewise continuous
complex-valued functions on K. So, if to an element f of H(S) we

associate the element f̃ in H2π(R) defined by f̃(θ) = f(eiθ), then this
clearly establishes a natural linear
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2 The Circle Group and its Characters

isomorphism between these two vector spaces of functions, and it is
customary to use this isomorphism to “identify” these spaces. Note
that if z0 = eiθ0 and g = fz0 , then g̃(θ) = f̃(θ + θ0). The correspon-

dence f ↔ f̃ allows us to define f being differentiable at z = eiθ to
mean that f̃ is differentiable at θ, and we define f ′(z) = f̃ ′(θ), so

that f̃ ′ = f̃ ′. We will write Ck(S) for the linear subspace of H(S)
consisting of functions with k continuous derivatives, and as usual
we will write f (k) for the k-th derivative of an element f of Ck(S).
If f ∈ H(S), we define the integral (or average) of f over S by the
formula: ∫

S

f(z) dz :=
1

2π

∫ 2π

0

f̃(θ) dθ.

and we can use this integral over S to define an inner product on
H(S) by:

〈f, g〉 :=

∫

S

f(z)g(z)dz.

and an associated “L2 norm”:

‖f‖2 := 〈f, f〉
1

2 =

(∫

S

|f(z)|2 dz

) 1

2

.

We will also need the so-called “sup” norm on H(S), defined by:

‖f‖∞ := sup{|f(z)| | z ∈ S},

and we note the obvious inequality ‖f‖2 ≤ ‖f‖∞.

⊲Exercise L–1. If f ∈ H(S) is continuously differentiable show
that

∫
S
f ′(z) dz = 0.

⊲Exercise L–2. Use the periodicity of f to show that, for any real
number θ0, ∫

S

f(z) dz =
1

2π

∫ θ0+2π

θ0

f̃(θ) dθ.

Hints:

1) First prove the easy case, θ0 is an integral multiple of 2π.

2) Using 1) show that, without loss of generality, we can assume
that 0 ≤ θ < 2π
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3) Using
∫ 2π

0 =
∫ θ0
0 +

∫ 2π

θ0
and

∫ θ0+2π

θ0
=

∫ 2π

θ0
+
∫ θ0+2π

2π , the rest
should be easy.

⊲Exercise L–3. Use the preceding exercise to deduce that for any
z0 ∈ S, ∫

S

fz0(z) dz =

∫

S

f(z) dz.

(This property of the integral is called “translation invariance”.)

A continuous function f from S into the non-zero complex num-
bers is called a character (of S) if it “preserves products”, i.e., if

f(z1z2) = f(z1)f(z2). We will denote the set of characters by Ŝ. One
very obvious character (the “identity” character) is e0, defined by
e0(z) = 1 for all z in S. It is easy to see that if f is a character then
f−1, defined by f−1(z) = 1/f(z) is also a character, and that if f1
and f2 are characters then so is f1f2, defined by f1f2(z) = f1(z)f2(z).

⊲Exercise L–4. Check that these definitions of identity, inverse,
and product make Ŝ into a commutative group (the group of charac-
ters of S).

Of course
∫
S
e0(z) dz =

∫
S
1 dz = 1, but we now note a very important

fact: If f is any character other than the identity then
∫
S f(z) dz = 0.

To see this, recall the definition of f translated by zo, fz0(z) = f(zoz).
If f is a character then f(zoz) = f(z0)f(z), and translation in the
domain becomes translation in the range, fz0(z) = f(z0)f(z). If we
combine this with translation invariance of the integral, we find

∫

S

f(z) dz =

∫

S

fz0(z) dz =

∫

S

f(z0)f(z) dz = f(z0)

∫

S

f(z) dz.

If f is not the identity character, e0, then there is some zo for which
f(zo) 6= 1, and so, as claimed,

∫
S f(z) dz = 0.

Are there any characters other than the identity? Yes, namely

en(z) = zn

for any n in Z, because

en(z1z2) = (z1z2)
n = zn1 z

n
2 = en(z1)en(z2).

Note that when n = 0 this includes the identity character e0, and that
in general enem = en+m, so that in the terminology of group theory,
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the set {en}n∈Z is a subgroup of Ŝ isomorphic to the integers under
addition. Notice, by the way, that in terms of the identification with
2π−periodic functions on the line,

ẽn(θ) = einθ.

All the characters we have seen map S into itself. This is no
accident! If f is a character and |f(z)| 6= 1 for some z in S, then (since
1 = f(1) = f(zz−1) = f(z)f(z−1) = f(z)f(z)−1) we can assume that
in fact |f(z)| > 1. But then the sequence |f(zn)| = |f(z)|n would be
unbounded, contradicting the fact that a continuous complex-valued
function on a compact set is bounded.

Now that we know that for any character f , |f(z)| = 1, it follows

that f−1(z) = f(z), so if g is also a character then their inner product
is give by:

〈f, g〉 =

∫

S

fg−1(z) dz.

We can immediately deduce from this that:

L.1.1 Theorem. The set of characters is orthonormal.

For if f 6= g, then the product h = fg−1 6= e0 is a character, and we
have seen that

∫
S
h(z) dz = 0 for a character h 6= e0. Thus 〈f, g〉 =∫

S fg−1(z) dz = 0. If f = g, then fg−1 = e0 and
∫
S e0(z) dz = 1. In

particular, {en}n∈Z is an orthonormal sequence in H(S). In fact:

L.1.2 Theorem. {en}n∈Z exhausts the set of characters.

To see that this is so, first note that if f is a character, then f
is determined by its restriction to any neighborhood of 1, That is,
if we know f(eit) for small t, then we also know it for arbitrary T ,

since f(eiT )) = (f(ei
T

n ))n. Secondly, for each real t we can find a real
g(t) such that f(eit) = eig(t), and g(t) is uniquely determined modulo
2π. Since f(ei0) = ei0 and f is continuous, there is a unique such
function g(t) defined near t = 0 with |g(t)| < π, and clearly this g is
continuous. If t1 and t2 are small, then since

f(ei(t1+t2)) = f(eit1eit2) = f(eit1)f(eit2) = eig(t1)eig(t2)

= ei(g(t1)+g(t2))
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it follows that g(t1 + t2) = g(t1) + g(t2), i.e., g is additive, and since
it is continuous it must be of the form g(t) = ct for some real c, and
clearly, in order for f to be well-defined, c must be an integer.

Since the characters {en}n∈Z form an orthonormal sequence, it is
natural to try to expand functions f on S into a linear combination

of characters. So for f ∈ H(S) we define a function f̂ : Z → C by:

f̂(n) = 〈f, en〉 =

∫

S

f(z)en(z) dz =
1

2π

∫ 2π

0

f̃(θ)e−inθ dθ,

and call f̂ the “Fourier Transform of f”. We write f ≈
∑

n∈Z f̂(n)en

to suggest that the Fourier Transform f̂ of f in some sense decomposes
f into an orthogonal linear combination of characters.

Suppose f ∈ C1(S). If we let g(z) = f(z)en(z) ∈ C1(S) then g ∈

C1(S) so
∫
S g′(z) dz = 0 and by the product rule, g′(z) = f ′(z)en(z)+

f(z)(−inen(z)). Substituting the latter form in the integral shows us
that

f̂ ′(n) =

∫

S

f ′(z)en(z) dz = in

∫

S

f(z)f̂ ′(n) dz = inf̂(n),

in other words the Fourier transform takes differentiation to multipli-
cation. By induction, for f ∈ Ck(S) it now follows that

f̂ (k)(n) = (in)kf̂(n).

More generally, suppose P (X) = a0 + a1X + . . . + akX
k is a poly-

nomial of degree k with complex coefficients and we let D denote
the first derivative operator. We define a “constant coefficient k-
th order differential operator”, L = P (D), a linear transformation
L : Ck(S) → C0(S) by Lf = P (D)f = a0f + a1f

′ + . . . + akf
(k).

Then from the results for Dk above and linearity,

L̂f(n) = P (in)f̂(n).

What’s going on here? Insofar as we can think of {en} as a basis

for C∞(S), all constant coefficient differential operators P (D) are

simultaneously diagonalized in this basis! This is part of what makes
the Fourier Transform such a powerful tool.
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The fact that our characters are eigenvectors of all constant coef-
ficient differential operators is already sufficient reason for our atten-
tion. But the class of operators that are diagonalized by characters
is even broader. We call a linear subspace V of H(S) translation in-

variant , if f ∈ V and z in S implies that fz is also in V . If V is
translation invariant, then we say that a linear map T : V → V com-

mutes with translations if for all f in V and z in S, T (fz) = (Tf)z. As
examples, we may check that since Dfz = (Df)z for any f ∈ C1(S)
and z ∈ S, induction and linearity tell us that C∞(S) is translation
invariant and that any constant coefficient differential operator P (D)
commutes with translations.

In fact:

L.1.3 Theorem. if V is any translation invariant linear subspace
of H(S) that contains all the characters, and if T : V → V is any
linear map that commutes with translations, then each character f is
an eigenvector of T with eigenvalue (Tf)(1).

Proof. The character condition, f(z)f(ζ) = f(zζ) = fz(ζ) says that
fz = f(z)f and hence, by linearity of T , (Tf)z = T (fz) = f(z)(Tf),
and evaluating both sides at 1 gives

(Tf)(z) = (Tf)z(1) = f(z)(Tf)(1),

or equivalently, Tf = (Tf)(1)f . Here is another proof of this im-
portant fact: because characters are nowhere equal to zero, we can
reformulate the condition that a character f is an eigenfunction of
a linear operator T , (with eigenvalue λf ) as the statement that the
quotient function (Tf/f), when evaluated at any z, is a constant
λf , i.e., is independent of z. Also, instead of evaluating the quotent
Tf/f at the argument z, we can translate it by z and evaluate at the
identity, i.e., by definition of translation, (Tf/f)(z) = (Tf/f)z(1) =
(Tf)z(1)/fz(1). If we now assume that the operator T is translation
invariant, then (Tf)z(1)/fz(1) = (T (fz))(1)/fz(1). But, because f is
a character, translation of f by z is equivalent to scalar multiplication
by f(z); i.e., fz = f(z)f , so that by linearity of T :

(Tf/f)(z) = (T (fz))(1)/fz(1)

= f(z)(Tf)(1)/f(z)f(1) = (Tf)(1)/f(1) = (Tf)(1).

proving again that any character f is an eigenfunction of any trans-
lation invariant linear operator T , corresponding to the eigenvalue
λf = (Tf)(1).
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Of course {en} is not a basis in the algebraic sense and for a

general element f of H(S), the infinite sum
∑

n∈Z f̂(n)en is not well-

defined. However for any positive integer N , f
N

=
∑

|n|≤N f̂(n)en
is a well-defined, infinitely differentiable function in H(S) and we
can investigate in what sense and to what extent f

N
approximates

f as N tends to infinity. There are numerous frameworks in which
such approximation results hold—and a full discussion of this subject
could and does fill respectable volumes. Below we shall only take
up a few of the most basic results in this direction. First though
let’s review some elementary facts and terminology concerning an
arbitrary orthonormal sequence {vn} in a vector space V with an

inner product 〈 , 〉 and associated norm ‖v‖ = 〈v, v〉
1

2 .

Let Vn denote the subspace of V spanned by v1, . . . , vn, and let
V∞ denote the union of the Vn (i.e., the linear subspace consisting of
all finite linear combinations of the vi). If an element f in V belongs
to Vn, then of course f =

∑n
i=1〈f, vi〉vi. But what does the sum

g =

n∑

i=1

〈f, vi〉vi

represent for an arbitrary element f of V , not necessarily in Vn? It
is easy to see that it is the “orthogonal projection of f on Vn”, i.e.,
the unique element of Vn such that f − g is orthogonal to everything
in Vn. Indeed, f = g + (f − g) is an identity, and for any vi,

〈(f − g), vi〉 = 〈f, vi〉 − 〈g, vi〉 = 〈f, vi〉 − 〈f, vi〉 = 0,

so by linearity, f − g is orthogonal to everything in the span of the
vi, i.e., Vn. If g′ were another such element of Vn, then g − g′ =
(f − g′)− (f − g) is the difference of vectors that are both orthogonal
to everything in Vn. Therefore g−g′ itself is orthogonal to everything
in Vn, and since g − g′ is in Vn, g − g′ = 0.

If h is any element of Vn then f − h = (f − g) + (g − h), and
since f − g and g−h are orthogonal, it follows from the Pythagorean
identity that

‖f − h‖
2
= ‖f − g‖

2
+ ‖g − h‖

2
≥ ‖f − g‖

2
,

with equality only if h = g. It is now immediate that g can be
characterized as the unique element of Vn that is closest to f . Tak-
ing h = 0 in the above and using ‖g‖2 =

∑n
i=1 |〈f, vi〉|

2, we get
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∑n
i=1 |〈f, vi〉|

2 ≤ ‖f‖
2
. Since this holds for all n, we have the so-

called “Bessel Inequality”

∞∑

i=1

|〈f, vi〉|
2 ≤ ‖f‖

2
< +∞

(so in particular limn→∞ |〈f, vn〉| = 0). If Bessel’s inequality is an
equality, it is referred to as the “Parseval Identity”.

L.1.4 Theorem (and Definition). The following three condi-
tions are equivalent, and if any one and hence all of them hold then
we call the orthonormal sequence {vn} a complete orthonormal se-
quence for V .

1) The Parseval Identity:

∞∑

i=1

|〈f, vi〉|
2 = ‖f‖

2

holds for all f in V .

2) For each f in V , the sequence of partial sums, fn =
∑n

i=1〈f, vi〉vi
converges to f , i.e.,

lim
n→∞

‖f − fn‖ = 0.

3) V∞ is dense in V , i.e., given f in V and ǫ > 0, there exist scalars
α1, . . . , αn such that

∥∥∥∥∥f −

n∑

i=1

αivi

∥∥∥∥∥ < ǫ.

Proof. The equivalence of 1) and 2) follows from the Pythagorean
identity ∥∥∥∥∥f −

n∑

i=1

〈f, vi〉vi

∥∥∥∥∥

2

= ‖f‖
2
−

n∑

i=1

|〈f, vi〉|
2,

and the equivalence of 2) and 3) follows from the fact that g =∑n
i=1〈f, vi〉vi is the linear combination of v1, . . . , vn closest to f , so

that ∥∥∥∥∥f −

n∑

i=1

〈f, vi〉vi

∥∥∥∥∥ ≤

∥∥∥∥∥f −

n∑

i=1

αivi

∥∥∥∥∥ .
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Let H
N
(S) denote the 2n+ 1 dimensional subspace of H(S) spanned

by the characters {en | −N ≤ n ≤ N}, and let H
∞
(S) denote the

union of all the H
N
(S), i.e., the space spanned by all the charac-

ters. Elements of H
∞
(S) are sometimes called finite Fourier series, or

trigonometric polynomials. Note that for f ∈ H(S), f
N
is the orthog-

onal projection of f onH
N
(S) and so is the unique best approximation

to f (in the L2 sense described above) among all finite linear com-
binations of e−N , . . . , eN . And in order to prove that the characters
en are a complete orthonormal sequence for H(S), so that these ap-
proximations to f in fact always converge to f in the L2 sense, it will
suffice to prove that H

∞
(S) is L2-dense in H(S). This fact is impor-

tant historically, and remains so in both theory and applications. We
now sketch a proof as a series of exercises.

⊲Exercise L–5. A complex-valued function f on C is said to be
a “polynomial in z and z̄” if there is complex polynomial in two
variables P (X,Y ) such that f(z) = P (z, z̄) for all z ∈ C. Show that
H

∞
(S) is just the space of functions on S that are restrictions to S of

such functions f .

L.1.5 The Stone-Weierstrass Aproximation Theorem (Spe-
cial Case). Any continuous complex-valued function on a closed,
bounded subset of C is the uniform limit of a sequence of polynomials
in z and z̄.

L.1.6 Corollary. H
∞

is dense in C0(S) with respect to the sup
norm and (since ‖ ‖2 ≤ ‖ ‖∞) also with respect to the L2 norm, i.e.,
given any f ∈ C0(S) and ǫ > 0, there is a g in H

∞
(S) such that

‖f − g‖2 ≤ ‖f − g‖∞ < ǫ.

L.1.7 Theorem. The set {en}n∈Z is a complete orthonormal se-
quence for H(S), so that for every f ∈ H(S), f

N
converges to f in

the L2 sense, i.e., limN→∞ ‖f − f
N
‖2 = 0.

L.1.8 Corollary (Parseval Theorem). The map f 7→ f̂ extends
uniquely to an isometry of L2(S) with L2(Z).

⊲Exercise L–6. Prove the preceding theorem by showing thatH
∞
(S)

is dense in H(S) with respect to the L2 norm. Since we already know
that H

∞
(S) is L2-dense in C0(S), it will suffice to show that C0(S)
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is L2-dense in H(S), i.e., that if f ∈ H(S) then one can find a con-
tinuous g with ‖f − g‖2 arbitrarily small. Now recall that elements
of H(S) are by definition piecewise continuous, and first handle the
case of an f that is continuous on a single subinterval of [0, 2π) and
zero on the rest.

⊲Exercise L–7. Weak Riemann-Lebesgue Lemma: Show that,

lim
n→∞

f̂(n) = 0

holds for any f in H(S),. (The real Riemann-Lebesgue Lemma says

that this is true for f in L1(S)). Deduce that if f ∈ Ck(S) then f̂(n) =

o(n−k), i.e., f̂(n)nk tends to zero. Thus, the more differentiable f ,
the more rapidly its Fourier coefficients tend to zero.

Note that the fact that f
N
converges to f in the L2 sense doesn’t

say anything about convergence in the uniform (i.e., ‖ ‖∞) sense, or
even about pointwise convergence. Recalling that the uniform limit
of continuous functions is continuous, we see that the Fourier series
for f cannot converge uniformly to f unless f is at least in C0(S).
But this is not sufficient, and we complete this discussion by quoting
two results indicating that pointwise and uniform convergence of the
Fourier series for f is related to the differentiability of f .

L.1.9 Theorem. If f ∈ H(S), then f
N
(z) converges to f(z) at all

points z of S where f is differentiable. If f ∈ C1(S) then in fact f
N

converges uniformly to f .
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L.2. Finite Models for the Circle Group

While the Fourier transform is a powerful analytical tool, it seems
at first glance to be a computationally intractable one; there are in-

finitely many Fourier coefficients f̂(n) needed to specify f , and eval-
uating each of them involves calculating an integral. On the other

hand, we know that, for smooth functions, f̂(n) decays very rapidly
with n, so we can expect that for reasonable applications only a small
error will result if we “filter out all the high-frequency modes” from
f , i.e., if we replace f by f

N
where N is sufficiently large. While this

is in fact so, it still leaves open the question of finding fast algorithms
for computing the finite number of Fourier coefficients necessary for
a particular applications. The area of “signal processing” is a good
place to get some feel for the problems and the way they are handled.
In general, a time varying signal is represented by one or more real
or complex valued functions of time. For example a sound or “audio”
signal is often represented by a single function (the amplitude of the
deviation of pressure from ambient pressure) while a video signal may
be represented by three time-dependent intensities (representing the
red, green, and blue values of the pixel currently being displayed).
Let’s consider the simpler case of sound. Suppose we want to store
an audio signal with fidelity “as good as the ear can hear”. Since
the human ear is insensitive to frequencies above roughly 20 KHz, it
follows from an important mathematical result (Nyquist’s Theorem)
that if we sample the amplitude 40 thousand times per second, we
will have enough information to reconstruct the signal with “audibly
perfect” fidelity. The signal is broken up into “time slices”, and we
choose units of time so that each time slice has length 2π. Each of
these is sampled at a certain sampling frequency (corresponding to at
least 40 thousand samples per second) and let’s suppose that there
are N samples per time slice. Now, we could choose to simply store
the N amplitudes samples per time slice but, to process and recon-
struct the signal electronically, it is preferable to have available the
Fourier transform of the signal during each time slice.

What we shall consider next is how to define a “discrete Fourier
transform” or DFT for the sampled signal. By wrapping the time
slice [t0, t0 + 2π) around the circle S, with the map t 7→ eit, the set
of sampling instants becomes an N -element subset S

N
of S, and the

sampled signal becomes a function f : S
N

→ C. (Let’s denote the
complete signal during the time slice by F : S → C, so f = F |S

N
.)



12 Finite Models for the Circle Group

How should we choose the subset S
N
? At first glance this seems to be

a fairly arbitrary choice. Of course we should take the points fairly
evenly spaced, but otherwise it wouldn’t seem to matter much what
the precise sample points were. But, recall that we used heavily the
fact that the circle S was a group in defining the Fourier transform,
and so if we are going to define a Fourier transform for a function on
S

N
it is natural to try to choose S

N
to be a subgroup of the circle

group. In fact this requirement uniquely specifies S
N
to be the group

S
N

= {1 = ω0, ω, . . . , ωN−1} of Nth roots of unity, where ω = ω
N

denotes the primitive Nth root of unity, ω = e2πi/N .

⊲Exercise L–8. Verify that a finite subgroup of S must be one of
the S

N
.

We denote by H(S
N
) the N -dimensional complex vector space

of complex valued functions on S
N
. If f ∈ H(S

N
), then for any

z0 in S
N

we can as before define the “translate”, fz0 ∈ H(S
N
) by

fz0(z) = f(zz0), and we define the “integral” or average value of f
over S

N
by the formula:

∫

SN

f(z) dz :=
1

N

∑

z∈SN

f(z) =
1

N

N−1∑

i=0

f(ωi).

And again as before, we use this to define an inner product and norm
for H(S

N
) by 〈f, g〉 :=

∫
SN

f(z)g(z)dz and ‖f‖ = 〈f, f〉1/2.

⊲Exercise L–9. Prove the translation invariance property of the
integral:

∫

SN

fz0(z) dz =

∫

SN

f(z) dz.

Of course we define a character for S
N
to be a product preserving

map of S
N
into the non-zero complex numbers, and as with S, we see

that the set Ŝ
N

of characters of S
N

is a group under multiplication,
the character group of S

N
.

⊲Exercise L–10. Use the same argument as before to deduce that
the elements of Ŝ

N
are orthonormal.
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Now any character for the circle of course restricts to a charac-
ter for S

N
, and in particular the characters ek(z) = zk for S define

characters on S
N
, which we still denote by ek.

⊲Exercise L–11. Show that ej = ek if and only if j ≡ k mod N ,

and deduce that Ŝ
N
= {e0, e1, . . . , eN−1

}.

Thus, {e0, e1, . . . , eN−1
} is an orthonormal basis for S

N
. Now,

since ejek = ej+k, we can regard the indices of the {ek} as belonging
to the group ZN of integers modulo N , giving a natural isomorphism
of Ŝ

N
with ZN .

Definition of the DFT. We define the discrete Fourier transform,

or DFT, of an element f of H(S
N
) to be the function f̂ : ZN → C

defined by

f̂(k) = 〈f, ek〉 =
1

N

N−1∑

j=0

fje
−2πikj/N ,

so that f =
∑N−1

j=0 f̂(k)ek.


