
Appendix D

Coordinate Systems
and Canonical Forms

D.1. Local Coordinates

Let 𝑂 be an open set in R𝑛. We say that an 𝑛-tuple of smooth real-

valued functions defined in 𝑂, (𝜙1, . . . , 𝜙𝑛), forms a local coordinate

system for 𝑂 if the map 𝜙 : 𝑝 �→ (𝜙1(𝑝), . . . , 𝜙𝑛(𝑝)) is a diffeomor-

phism, that is, if it is a one-to-one map of 𝑂 onto some other open

set 𝑈 of R𝑛 and if the inverse map 𝜓 := 𝜙−1 : 𝑈 → R𝑛 is also

smooth. The relation of 𝜓 to 𝜙 is clearly completely symmetrical,

and in particular 𝜓 defines a coordinate system (𝜓1, . . . , 𝜓𝑛) in 𝑈 .

D.1.1. Remark. By the Inverse Function Theorem, the necessary

and sufficient condition for 𝜙 to have a smooth inverse in some neigh-

borhood of a point 𝑝 is that the 𝐷𝜙𝑝 is an invertible linear map, or

equivalently that the differentials (𝑑𝜙𝑖)𝑝 are linearly independent and

hence a basis for (R𝑛)∗. In other words, given 𝑛 smooth real-valued

functions (𝜙1, . . . , 𝜙𝑛) defined near 𝑝 and having linearly indepen-

dent differentials at 𝑝, they always form a coordinate system in some

neighborhood 𝑂 of 𝑝.

The most obvious coordinates are the “standard coordinates”,

𝜙𝑖(𝑝) = 𝑝𝑖, with 𝑂 all of R𝑛 (so 𝜙 is just the identity map). If

𝑒1, . . . , 𝑒𝑛 is the standard basis for R
𝑛, then 𝜙1, . . . , 𝜙𝑛 is just the

dual basis for (R𝑛)∗. We will usually denote these standard coordi-
nates by (𝑥1, . . . , 𝑥𝑛). More generally, given any basis 𝑓1, . . . , 𝑓𝑛 for

R𝑛, we can let (𝜙1, . . . , 𝜙𝑛) be the corresponding dual basis. Such
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248 D. Coordinate Systems and Canonical Forms

coordinates are called Cartesian. In this case, 𝜙 is the linear isomor-

phism of R𝑛 that maps 𝑒𝑖 to 𝑓𝑖. If the 𝑓𝑖 are orthonormal, then these

are called orthogonal Cartesian coordinates and 𝜙 is an orthogonal

transformation.

Why not just always stick with the standard coordinates? One

reason is that once we understand a concept in R𝑛 in terms of ar-

bitrary coordinates, it is easy to make sense of that concept on a

general “differentiable manifold”. But there is another important rea-

son. Namely, it is often possible to simplify the analysis of a problem

considerably by choosing a well-adapted coordinate system. In more

detail, various kinds of geometric and analytic objects have numer-

ical descriptions in terms of a coordinate system. This observation

by Descartes is of course the basis of the powerful “analytic geom-

etry” approach to studying geometric questions. Now, the precise

numerical description of an object is usually highly dependent on the

choice of coordinate system, and it can be more or less complicated

depending on that choice. Frequently, there will be certain special

“adapted” coordinates with respect to which the numerical descrip-

tion of the object has a particularly simple so-called “canonical form”,

and facts that are difficult to deduce from the description with respect

to general coordinates can be obvious from the canonical form.

Here is a well-known simple example. An ellipse in the plane, R2,

is given by an implicit equation of the form 𝑎𝑥2+𝑏𝑦2+𝑐𝑥𝑦+𝑑𝑥+𝑒𝑦+

𝑓 = 0, but if we choose the diffeomorphism that translates the origin

to the center of the ellipse and rotates the coordinate axes to be the

axes of the ellipse, then in the resulting coordinates 𝜉, 𝜂 the implicit

equation for the ellipse will have the simpler form 𝛼2𝜉2 + 𝛽2𝜂2 = 1.

Notice that this diffeomorphism is actually a Euclidean motion, so

𝜉 and 𝜂 are orthogonal Cartesian coordinates and even the metric

properties of the ellipse are preserved by this change of coordinates.

If that is not important in some context, we could instead use 𝑢 :=

𝛼𝜉 and 𝑣 := 𝛽𝜂 as our coordinates and work with the even simpler

equation 𝑢2 + 𝑣2 = 1.

This example illustrates the general idea behind choosing coordi-

nates adapted to a particular object Ω in some open set 𝑂. Namely,
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you should think intuitively of finding a diffeomorphism 𝜙 that moves,

bends, and twists Ω into an object Ω𝜙 in 𝑈 = 𝜙(𝑂), one that is in

a “canonical configuration” having a particularly simple description

with respect to standard coordinates. While one can apply this tech-

nique to all kinds of geometric and analytic objects, here we will

concentrate on three of the objects of greatest interest to us, namely

real-valued functions, 𝑓 : 𝑂 → R; smooth curves, 𝜎 : 𝐼 → 𝑂; and

vector fields 𝑉 defined in 𝑂.

First let us consider how to define 𝑓𝜙, 𝜎𝜙, and 𝑉 𝜙. For functions

and curves the definition is almost obvious; namely 𝑓𝜙 : 𝑈 → R is

defined by 𝑓𝜙 := 𝑓 ∘𝜙−1 (so that 𝑓𝜙(𝜙1(𝑥), . . . 𝜙𝑛(𝑥)) = 𝑓(𝑥1, . . . , 𝑥𝑛)

for all 𝑥 ∈ 𝑂) and 𝜎𝜙 : 𝐼 → 𝑈 is defined by 𝜎𝜙 := 𝜙 ∘ 𝜎.

Defining the vector field 𝑉 𝜙 in 𝑈 from the vector field 𝑉 in

𝑂 is slightly more tricky. At 𝑝 in 𝑂, 𝑉 defines a tangent vector,

(𝑝, 𝑉 (𝑝)), that the differential of 𝜙 at 𝑝 maps to a tangent vector at

𝑞 = 𝜙(𝑝), 𝑉 𝜙(𝑞) := (𝑞,𝐷𝜙𝑝(𝑉 (𝑝))). Written explicitly in terms of 𝑞

(and dropping the first component) gives the somewhat ugly formula

𝑉 𝜙(𝑞) := 𝐷𝜙𝜙−1(𝑞)𝑉 (𝜙
−1(𝑞)), but note that if the diffeomorphism

𝜙 is linear (i.e., if the coordinates (𝜙1, . . . , 𝜙𝑛) are Cartesian), then

𝐷𝜙𝑝 = 𝜙, so the formula simplifies to 𝑉 𝜙 = 𝜙𝑉 𝜙−1.

⊳Exercise D–1. Recall that the radial (or Euler) vector field 𝑅

on R𝑛 is defined by 𝑅(𝑥) = 𝑥, or equivalently, written as a differen-

tial operator using standard coordinates, 𝑅 =
∑𝑛

𝑖=1 𝑥
𝑖 ∂
∂𝑥𝑖 . Show

that if 𝜙 is any linear diffeomorphism of R𝑛, then 𝑅𝜙 = 𝑅, or

equivalently, if (𝑦1, . . . , 𝑦𝑛) is any Cartesian coordinate system, then

𝑅 =
∑𝑛

𝑖=1 𝑦𝑖
∂

∂𝑦𝑖
. That is, the radial vector field has the remakable

property that it “looks the same” in all Cartesian coordinate sys-

tems. Show that any linear vector field 𝐿 on R𝑛 with this property

must be a constant multiple of the radial field. (Hint: The only linear

transformations that commute with all linear isomorphisms of R𝑛 are

constant multiples of the identity.)

⊳Exercise D–2. Let 𝑓 , 𝜎, and 𝑉 be as above.

a) Show that if 𝜎 is a solution curve of 𝑉 , that is, if 𝜎′(𝑡) = 𝑉 (𝜎(𝑡)),

then 𝜎𝜙 is a solution of 𝑉 𝜙.
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b) Show that if 𝑓 is a constant of the motion for 𝑉 (i.e., 𝑉 𝑓 ≡ 0),

then 𝑓𝜙 is a constant of the motion for 𝑉 𝜙.

A common reason for using a particular coordinate system is

that these coordinates reflect the symmetry properties of a geomet-

rical problem under consideration. While Cartesian coordinates are

good for problems with translational symmetry, they are not well

adapted to problems with rotational symmetry, and the analysis of

such problems can often be simplified by using some sort of polar

coordinates. In R2 we have the standard polar coordinates 𝜙(𝑥, 𝑦) =

(𝑟(𝑥, 𝑦), 𝜃(𝑥, 𝑦)) defined in 𝑂 = the complement of the negative 𝑥-axis

by 𝑟 :=
√

𝑥2 + 𝑦2 and 𝜃 := the branch of arctan( 𝑦𝑥 ) taking values in

−𝜋 to 𝜋. In this case 𝑈 is the infinite rectangle (0,∞) × (−𝜋, 𝜋)

and the inverse diffeomorphism is given by 𝜓(𝑟, 𝜃) = (𝑟 cos 𝜃, 𝑟 sin 𝜃).

Similarly, in R3 we can use polar cylindrical coordinates 𝑟, 𝜃, 𝑧 to deal

with problems that are symmetric under rotations about the 𝑧-axis or

polar spherical coordinates 𝑟, 𝜃, 𝜑 for problems with symmetry under

all rotations about the origin.

⊳Exercise D–3. If 𝑓(𝑥, 𝑦) is a real-valued function, then 𝑓𝜙(𝑟, 𝜃) =

𝑓 ∘𝜙−1(𝑟, 𝜃) = 𝑓(𝑟 cos 𝜃, 𝑟 sin 𝜃), so if 𝑓 is 𝐶1, then, by the chain rule,
∂𝑓𝜙

∂𝑟 (𝑟, 𝜃) =
∂𝑓
∂𝑥 cos 𝜃+

∂𝑓
∂𝑦 sin 𝜃, and similarly,

∂𝑓𝜙

∂𝜃 (𝑟, 𝜃) = −∂𝑓
∂𝑥𝑟 sin 𝜃+

∂𝑓
∂𝑦 𝑟 cos 𝜃 = −𝑦 ∂𝑓

∂𝑥 + 𝑥∂𝑓
∂𝑦 . Generalize this to find formulas for

∂𝑓𝜙

∂𝜙𝑖
in

terms of the ∂𝑓
∂𝑥𝑖 for a general coordinate system 𝜙.

⊳Exercise D–4. Show that a 𝐶1 real-valued function in the plane,

𝑓 : R2 → R, is invariant under rotation if and only if 𝑦 ∂𝑓
∂𝑥 = 𝑥∂𝑓

∂𝑦 .

(Hint: The condition for 𝑓 to be invariant under rotation is that

𝑓𝜙(𝑟, 𝜃) should be a function of 𝑟 only, i.e., ∂𝑓𝜙

∂𝜃 ≡ 0.)

D.2. Some Canonical Forms

Now let us look at the standard canonical form theorems for functions,

curves, and vector fields.

Recall that if 𝑓 is a 𝐶1 real-valued function defined in some open

set 𝐺 of R𝑛, then a point 𝑝 ∈ 𝐺 is called a critical point of 𝑓 if

𝑑𝑓𝑝 = 0 and otherwise it is called a regular point of 𝑓 . If 𝑝 is a regular
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point, then we can choose a basis ℓ1, . . . , ℓ𝑛 of (R
𝑛)∗ with ℓ1 = 𝑑𝑓𝑝,

and by the remark at the beginning of this appendix it follows that

(𝑓, ℓ2, . . . , ℓ𝑛) is a coordinate system in some neighborhood 𝑂 of 𝑝.

This proves the following canonical form theorem for smooth real-

valued functions:

D.2.1. Proposition. Let 𝑓 be a smooth real-valued function

defined in an open set 𝐺 of R𝑛 and let 𝑝 ∈ 𝐺 be a regular point of 𝑓 .

Then there exists a coordinate system (𝜙1, . . . , 𝜙𝑛) defined in some

neighborhood of 𝑝 such that 𝑓𝜙 = 𝜙1.

Informally speaking, we can say that near any regular point a smooth

function looks linear in a suitable coordinate system.

Next we will see that a straight line is the canonical form for a

smooth curve 𝜎 : 𝐼 → R𝑛 at a regular point, i.e., a point 𝑡0 ∈ 𝐼 such

that 𝜎′(𝑡0) ∕= 0.
D.2.2. Proposition. If 𝑡0 is a regular point of the smooth curve

𝜎 : 𝐼 → R𝑛, then there is a diffeomorphism 𝜙 of a neighborhood

of 𝜎(𝑡0) into R
𝑛 such that 𝜎𝜙(𝑡) = 𝛾(𝑡), where 𝛾 : R → R𝑛 is the

straight line 𝑡 �→ (𝑡, 0, . . . , 0).

Proof. Without loss of generality we can assume that 𝑡0 = 0. Also,

since we can anyway translate 𝜎(𝑡0) to the origin and apply a linear

isomorphism mapping 𝜎′(𝑡0) to 𝑒1 = (1, 0, . . . , 0), we will assume

that 𝜎(0) = 0 and 𝜎′(0) = 𝑒1. Then if we define a map 𝜓 near the

origin of R𝑛 by 𝜓(𝑥1, . . . , 𝑥𝑛) = 𝜎(𝑥1) + (0, 𝑥2, . . . , 𝑥𝑛), it is clear

that 𝐷𝜓0 is the identity, so by the inverse mapping theorem, 𝜓 maps

some neighborhood 𝑈 of the origin diffeomorphically onto another

neighborhood 𝑂. By definition, 𝜓 ∘ 𝛾(𝑡) = 𝜎(𝑡), so if 𝜙 = 𝜓−1, then

𝜎𝜙(𝑡) = 𝜙 ∘ 𝜎(𝑡) = 𝛾(𝑡).

Notice a pattern in the canonical form theorems for functions and

curves. If we keep away from “singularities”, then locally a function

or curve looks like the simplest example. This pattern is repeated for

vector fields. Recall that a singularity of a vector field 𝑉 is a point

𝑝 where 𝑉 (𝑝) = 0, and the simplest vector fields are the constant

vector fields, such as ∂
∂𝑥1 . The canonical form theorem for vector



252 D. Coordinate Systems and Canonical Forms

fields, often called the “Straightening Theorem”, just says that near

a nonsingular point a smooth vector field looks like a constant vector

field. Let’s try to make this more precise.

D.2.3. Definition. Let 𝑉 be a vector field defined in an open set

𝑂 of R𝑛, and let 𝜙 = (𝜙1, . . . , 𝜙𝑛) be local coordinates in 𝑂. We call

𝜙 the flow-box coordinates for 𝑉 in 𝑂 if 𝑉 𝜙 = ∂
∂𝜙1
.

D.2.4. Remark. Let 𝜙(𝑥, 𝑦) = (𝑟(𝑥, 𝑦), 𝜃(𝑥, 𝑦)) denote polar co-

ordinates in R2. We saw above that if 𝑉 = 𝑥 ∂
∂𝑦 −𝑦 ∂

∂𝑥 , then 𝑉 𝜙 = ∂
∂𝜃 ,

so that polar coordinates are flow-box coordinates for 𝑉 .

D.2.5. The Straightening Theorem. If 𝑉 is a smooth vector

field defined in an open set 𝑂 of R𝑛 and 𝑝0∈𝑂 is not a singularity of

𝑉 , then there exist flow-box coordinates for 𝑉 in some neighborhood

of 𝑝0.

Proof. This is a very strong result; it easily implies both local exis-

tence and uniqueness of solutions and smooth dependence on initial

conditions. And as we shall now see, these conversely quickly give

the Straightening Theorem. Without loss of generality, we can as-

sume that 𝑝0 is the origin and 𝑉 (0) = 𝑒1 = (1, 0, . . . , 0). Choose

𝜖 > 0 so that for ∥𝑝∥ < 𝜖 there is a unique solution curve of 𝑉 ,

𝑡 �→ 𝜎(𝑡, 𝑝), defined for ∣𝑡∣ < 𝜖 and satisfying 𝜎(0, 𝑝) = 𝑝. The ex-

istence of 𝜖 follows from the local existence and uniqueness theorem

for solutions of ODE (Appendix B). Let 𝑈 denote the disk of radius

𝜖 in R𝑛 and define 𝜓 : 𝑈 → R𝑛 by 𝜓(𝑥) = 𝜎(𝑥1, (0, 𝑥2, . . . , 𝑥𝑛)). It

follows from smooth dependence on initial conditions (Appendix G)

that 𝜓 is a smooth map.

⊳Exercise D–5. Complete the proof of the Straightening Theorem

by first showing that 𝐷𝜓0 is the identity map (so 𝜓 does define a

local coordinate system near the origin) and secondly showing that

𝑉 𝜙 = ∂
∂𝜙1
, where 𝜙 := 𝜓−1. (Hint: Note that 𝜎(0, (0, 𝑥2, . . . , 𝑥𝑛)) =

(0, 𝑥2, . . . , 𝑥𝑛), while
∂

∂𝑥1
𝜎(𝑥1, (0, . . . , 0)) = 𝑒1. The fact that 𝐷𝜓0

is the identity is an easy consequence. Since 𝑡 �→ 𝜎(𝑡, 𝑝) is a solution

curve of 𝑉 , it follows that 𝑉 (𝜓(𝑥)) = ∂
∂𝑥1

𝜓(𝑥), and it follows that

𝐷𝜓𝑝 maps (
∂

∂𝑥1
)𝑝 to 𝑉 (𝜓(𝑝)). Use this to deduce 𝑉 𝜙 = ∂

∂𝜙1
.
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D.2.6. Definition. Let 𝑉 : R𝑛 → R𝑛 be a smooth vector field. If

𝑂 is an open set inR𝑛, then a smooth real-valued function 𝑓 : 𝑂 → R

is called a local constant of the motion for 𝑉 if 𝑉 𝑓 ≡ 0 in 𝑂.

Notice that 𝑥2, 𝑥3, . . . , 𝑥𝑛 are constants of the motion for the

vector field ∂
∂𝑥1
. Hence,

D.2.7. Corollary of the Straightening Theorem. If 𝑉 is

a smooth vector field on R𝑛 and 𝑝 is any nonsingular point of 𝑉 ,

then there exist 𝑛− 1 functionally independent local constants of the

motion for 𝑉 defined in some neighborhood 𝑂 of 𝑝.

(Functionally independent means that they are part of a coordinate

system.)

D.2.8. CAUTION. There are numerous places in the mathe-

matics and physics literature where one can find a statement to the

effect that every vector field on R𝑛 has 𝑛−1 constants of the motion.
What is presumably meant is something like the above corollary, but

it is important to realize that such statements should not be taken

literally—there are examples of vector fields with no global constants

of the motion except constants. A local constant of the motion is

very different from a global one. If 𝑉 is a vector field in R𝑛 and 𝑓

is a local constant of the motion for 𝑉 , defined in some open set 𝑂,

then if 𝜎 is a solution of 𝑉 , 𝑓(𝜎(𝑡)) will be constant on any interval 𝐼

such that 𝜎(𝐼) ⊆ 𝑂; however it will in general have different constant

values on different such intervals.




