
Chapter 5

Numerical Methods

5.1. Introduction

In the previous chapters we have developed a theoretical understand-

ing of initial value problems for ODEs. Only rarely can these problems

be solved in closed form, and even when closed-form solutions do ex-

ist, their behavior may still be difficult to understand. To gain greater

insight, solutions are most commonly approximated numerically us-

ing discretization methods. This chapter is intended as a survey of

these methods focusing on how they are designed, implemented, and

analyzed.

Numerical methods are designed to approximate solutions of lo-

cally well-posed initial value problems

y′ = f(t,y), y(to) = yo, y ∈ Rd. (5.1)

Well-posedness means that there exists a unique solution y(t; to,yo)

that satisfies (5.1) on a maximal interval of existence [to, to + T∗),

0 < T∗ ≤ +∞, and that depends continuously on (to,yo) ∈ Rd+1.

We will assume that f(t,y) is continuous in its first argument, t, and

locally uniformly Lipschitz continuous in its second argument, y, i.e.,

||f(t,y1)− f(t,y2)|| ≤ L||y1 − y2||, (5.2)

for some L > 0 and any y1,y2 in a neighborhood of yo. As we

have shown in previous chapters, these assumptions guarantee local

well-posedness.

133

134 5. Numerical Methods

Discretization methods employ approximations of (5.1) to con-

struct a discrete set of y-values, yn, n = 0, 1, . . . , in such a man-

ner that yn should approximate y(tn) at a corresponding set of t-

values, tn, called time-steps, as the separation of the time-steps,

hn = tn+1 − tn, tends uniformly to zero. For most purposes, we

will restrict ourselves to hn that do not vary with n and call their

common value h = tn+1 − tn the step-size or discretization param-

eter. Variable step-size methods are also useful, but we will only

discuss them briefly in the context of automatic error control. We

are often interested in the behavior of a discretization method as the

discretization parameter decreases to zero, in which case the meaning

of yn becomes ambiguous. When it is required for clarity in such

situations, we will write yn,h to indicate both the step number and

the step-size and otherwise suppress the explicit dependence on h.

Discretization methods are broadly categorized as explicit or im-

plicit. Briefly, an explicit method obtains the successive values of yn+1

parametrically in terms of given or previously computed quantities

and is represented symbolically in the form

yn+1 = H(f , tn, . . . , tn+1−m,yn, . . . ,yn+1−m).

In contrast, an implicit method defines yn+1 as the solution of an

equation:

G(f , tn+1, . . . , tn+1−m,yn+1, . . . ,yn+1−m) = 0

that cannot in general be put in the explicit form above.

Discretization methods are also characterized by the number m

of previously computed quantities, or steps, that the method uses to

compute each subsequent approximate value of the solution and by

the number of evaluations of the vector field f , or stages, that are

used per time-step. In the next section, we introduce some basic

examples that illustrate the considerations involved in choosing be-

tween explicit or implicit methods, single- or multistep, and one- or

multistage methods, in order to obtain the greatest computational

efficiency in different situations.

All of the r-stage one-step methods we will consider can be writ-

ten in the form that characterizes methods known as Runge-Kutta

5.1. Introduction 135

Methods. Given a numerical initial value y0, these methods take the

specific form

yn+1 = yn + h

r∑
i=1

γiy
′
n,i, n = 0, 1, . . . (5.3)

where

y′
n,i = f(tn + αih,yn + h

r∑
j=1

βijy
′
n,j) and αi =

r∑
j=1

βij . (5.3′)

If βij = 0 for j ≥ i, the method is explicit; otherwise it is implicit.

The strategy behind these methods is to obtain better approxima-

tions of y(tn+1) by sampling the vector field f(t,y) at r points near

the solution curve emanating from (tn,yn). Each additional sample

provides cumulatively better estimates of the solution curve, and thus

subsequent samples can also be chosen more usefully. The analyti-

cal initial value is sufficient to initialize a one-step method, and no

storage of previously computed values is required.

All of the m-step one-stage methods we will consider can be writ-

ten in the form that characterizes methods known as linear m-step

methods . Given numerical initial values y0, . . . ,ym−1, these methods

take the specific form

yn+1 =

m−1∑
j=0

ajyn−j + h

m−1∑
j=−1

bjy
′
n−j ,

n = 0, 1, . . . , where y′
j = f(tj ,yj).

(5.4)

If b−1 = 0, the method is explicit; otherwise yn+1 appears on the

right-hand side in the form f(tn+1,yn+1) and the method is implicit.

The strategy behind these methods is to obtain better approxima-

tions of y(tn+1) by using information from m prior approximations

and vector field evaluations, tj ,yj ,f(tj ,yj), j = n, . . . , n − (m − 1)

that have been stored or generated for initialization. In contrast to

multistage methods, only one evaluation of the vector field f defin-

ing the ODE is required per time-step. Discussions of more general

methods that combine both Runge-Kutta and multistep characteris-

tics can be found in [GCW] and other references listed in the Web

Companion.

136 5. Numerical Methods

Even a discussion of numerical methods must address “theory” as

well as “practice”. First and foremost, one needs to answer the theo-

retical question of whether the values obtained by applying a method

converge to the analytical solution y(to+T), as the discretization pa-

rameter tends to zero and the number of steps increases in such a way

that the time interval they represent remains fixed. We call a method

convergent if and only if, for any IVP (5.1) satisfying (5.2) and any

T > 0 such that to + T ∈ [to, to + T∗), the values yn,h obtained from

the method satisfy

||y(to + T)− yn,h|| → 0 (5.5)

as n → ∞ and h = T/n. Note that (5.5) implies that yn,h exists

for sufficiently large n, an issue for implicit methods. If a method is

explicit, yn,h is defined for any h > 0 and n > 0. The existence of

yn,h is only an issue for implicit methods since they are defined for

any h > 0 and n > 0 if the method is explicit.

We will analyze both the theoretical convergence and practical

efficiency of a numerical method in terms of two essential concepts,

accuracy and absolute stability. The order of accuracy of a (conver-

gent) method refers to how rapidly errors decrease in the limit as the

step-size tends to zero. We say that such a method converges with

order of accuracy P , or, simply, is a P th-order accurate method, if

and only if there exists a C > 0 depending only on y, its derivatives,

and T , such that

||y(to + T)− yn,h|| ≤ ChP = C

(
T

N

)P

(5.6)

as n → ∞ and no such estimate holds for any greater value of P .

The dependence of C on T can be removed by considering closed

subintervals of the maximal interval of existence. The potential sig-

nificance of accuracy is immediate: if the increase in computational

effort per step required to achieve higher-order accuracy is outweighed

by reducing the number of steps required to obtain an approximation

within a desired tolerance, the overall computation can be performed

more efficiently.

5.1. Introduction 137

Different notions of stability for numerical methods refer to its

tendency 1) to dissipate, 2) to not amplify, or 3) to not uncontrollably

amplify perturbations introduced into an approximation. It is well

known that there is conflicting nomenclature for certain numerical

methods. Less well known is the fact that the term used to describe

one of the most essential characteristics of a numerical method, its

absolute stability , is defined by property 1) in some treatments but by

property 2) in others! (See the Web Companion for some examples.)

Both properties rule out unbounded growth of perturbations when

applied to a problem or class of problems using a particular time-step,

so that any systematic amplification is prohibited. Because we wish to

encompass the two main types of well-posed initial value problems,

those modeling oscillation, transport, and waves, along with those

modeling dissipation and diffusion, we shall follow the convention that

says that a method is absolutely stable with respect to a particular

ODE and step-size h if the numerical solution is bounded as tn → ∞.

Specifically, there exists a C > 0 depending only on the initial value

such that

||yn,h|| ≤ C (5.7)

for all n ≥ 0. There are also reputable treatments whose definition of

absolute stability also requires that ||yn,h|| → 0 as tn → ∞.

For the theoretical considerations of convergence, only the much

weaker notion of stability corresponding to property 3) is a necessary

condition. This minimal form of stability is called either 0-stability ,

or just plain stability . A method is 0-stable with respect to a given

problem if, for sufficiently small h, the growth of perturbations intro-

duced in each step, representing errors made in prior approximations,

can be controlled by some (possibly growing and problem-dependent)

function of time. Formally, we say that a method is 0-stable with

respect to a particular ODE (5.1), (5.2) if there exists a step-size

ho > 0 such that for any N making 0 < h = T/N < ho, and all

0 ≤ n ≤ N , the difference between the numerical solution yn,h and

any numerical solution yn,h;δ, defined by the same method with the

same step-size, but with perturbations of magnitude no greater than

δ > 0 introduced initially and added to the resulting, cumulatively

138 5. Numerical Methods

perturbed values yn+1,h;δ at each subsequent step, satisfies

||yn,h − yn,h;δ|| ≤ C(T)δ. (5.8)

for some positive function of the interval length, C(T). Calling such

a method ‘not uncontrollably unstable’ might be more appropriate.

We might wonder if all approximation methods that formally approx-

imate (5.1) satisfy this condition. Indeed, the Runge-Kutta Methods

(5.3) are 0-stable by construction. However, we will see examples of

linear multistep methods that arise from approximations that are for-

mally quite accurate but that violate 0-stability. A method that is not

0-stable and thus nonconvergent should only be considered in order

to understand the causes of its failure, never for actual computation.

The facts that 0-stability only involves sufficiently small step-sizes and

that it is associated with absolute stability for the problem y′ = 0, or

equivalently for the step-size h = 0, explain the terminology.

We can now describe how we aim to understand the theoretical

behavior, convergence and higher-order convergence, of these classes

of numerical methods. Various equivalent conditions characterize the

order of accuracy a method will attain if it is also 0-stable. The

simplest example of such a condition is based on applying a method

to the scalar ODE y′ = 1, y(to) = yo (using exact initialization

yj = yo+(tj − to), j = 0, . . . ,m−1, in the multistep case). If the re-

sulting solution is exact at all subsequent time-steps, yn = yo+(tn−to)

for all n > 0, we say that the method is consistent. A fundamental

result is that 0-stability and consistency are not only necessary, but

together they are sufficient for a method to be convergent with or-

der P = 1. Higher-order potential (or formal) accuracy of a linear

multistep method, subject to 0-stability, is equivalent to exactness

on ODEs whose solutions are polynomials of degree ≤ P . For each

successive order, this corresponds to one condition that can either be

expressed as a linear equation in the coefficients in (5.4), in terms of

the asymptotic behavior of a certain polynomial formed from these

coefficients, or in terms of dependence on h of the magnitude of er-

rors the method introduces at each step. And while we have noted

that 0-stability is inherent in the form of Runge-Kutta Methods, the

conditions on their coefficients required for each additional degree of

5.1. Introduction 139

accuracy are nonlinear and their number grows exponentially, while

the number of coefficients only grows quadratically with the number

of stages.

Convergence is not a guarantee that a method will perform even

adequately in practice. The error bound that guarantees convergence

and describes its rate includes contributions reflecting both the ac-

curacy and absolute stability of a method. Growth of perturbations

does not prevent high-order convergence, but the growth of pertur-

bations that 0-stability permits can easily dominate these estimates

until the step-size h is far smaller than accuracy considerations alone

would otherwise require, and so render high-order accuracy irrelevant.

For this reason, absolute stability for moderate step-sizes with respect

to the problem at hand is the more practically significant property.

So no matter how high the order of convergence that theory pre-

dicts, we will see that absolute stability analysis is often the deciding

factor in performance. There are two situations in particular where

these phenomena are especially important. One occurs in the case of

multistep methods, whose solutions depend on initial conditions not

present in the analytical problem. Because of this, multistep meth-

ods have more modes of potential amplification of perturbations than

one-step methods. The other occurs in systems whose modes have

widely separated temporal scales and applies to both one-step and

multistep methods. This separation is quantified through a ratio of

magnitudes of eigenvalues of the linearized system. As we shall see,

such modes inevitably appear and are excited when we attempt to

use discretized systems to accurately approximate the behavior of in-

terest in certain important systems of ODE. Such systems are usually

referred to as being stiff in the numerics literature. Absolute stabil-

ity of a method with respect to those peripheral modes and step-size

used ensures that small errors arising in these modes do not amplify

and overwhelm phenomena in modes we wish to and can otherwise

resolve.

In the next section, we will introduce seven basic numerical meth-

ods in order to motivate and illustrate the theory, and the role of

absolute stability in making the theory useful in practice. These

140 5. Numerical Methods

methods have been chosen as prototypes for multiple reasons. First,

they exemplify a number of the important different features and prop-

erties numerical methods can possess. Second, their derivations are

motivated by approximation techniques that can be generalized to

obtain entire families of methods with useful characteristics. And

third, they are simple enough that their behavior on two important

classes of model problems can be rigorously analyzed and completely

understood.

The first class of model problems is the P th-order accuracy model

problem, MA(P):

y′ = f(t), y(0) = yo, (MA(P))

where f(t) is any polynomial of degree ≤ P −1, so that the analytical

solution y(t) is a polynomial of degree P satisfying the initial con-

dition. This class of model problems can be used to understand the

order accuracy of any linear multistep method, and explicit Runge-

Kutta Methods for P ≤ 2. Exact solutions of this model problem

for comparison with numerical solutions are easily obtained by antid-

ifferentiation. For each example method, we will obtain an explicit

formula for the approximations yn that it generates when applied to

(MA(P)) for some appropriate degree P .

The second class of model problems is the absolute stability model

problem, (MS(λ):

y′ = λy, y(0) = 1, (MS(λ))

where we call λ the model parameter . We will eventually allow both

λ and y(t) to be complex, but to begin with, we will take both to

be real scalars. These model problems can be used to understand

the stability properties, of a method, especially absolute stability,

which is why we refer to it as (MS(λ)). For these homogeneous,

first-order, linear, constant coefficient, scalar ODEs, amplification of

perturbations amounts to the same thing as amplification of solutions,

and therefore absolute stability with respect to (MS(λ)), sometimes

called linearized absolute stability, forbids unbounded growth of the

numerical solutions themselves. For Runge-Kutta Methods this is

equivalent to restricting w = λh so that the amplification factor of the

method a(w) = yn+1/yn satisfies |a(w)| ≤ 1. (As noted above, some

authors require |a(w)| < 1.) We call the set {w ∈ C | |a(w)| ≤ 1} the

5.1. Introduction 141

region of absolute stability of the method. The set {w ∈ C | |a(w)| <
1} has been called the linearized stability domain, or lsd [IA1, p. 68].

Though it may seem surprising, we will also consider the analytical

solution, yn+1 = eλhyn as a numerical method. We will when we solve

systems of ODEs designed to approximate constant coefficient PDEs,

where it is known as the Fourier, or spectral, method. The spectral

method is often used in conjunction with nonexact methods via a

technique known as splitting. The region of absolute stability of the

analytical solution method is {w ∈ C | Re(w) ≤ 0}. We are primarily

interested in the absolute stability of other methods for these values

of w although nonlinear stabilization can lead us to consider problems

with Re(w) > 0 as well.

The model problems (MS(λ)) are universal, in the sense that

their solutions form a basis for the space of homogeneous solutions of

any diagonalizable systems of first-order constant coefficient ODEs.

Such systems arise upon linearizing more general systems of ODEs

about an equilibrium. They also appear in the spatial discretiza-

tions of PDEs of evolution discussed in Section 5.6. The absolute

stability model problems for negative real λ arise directly from eigen-

function expansions of solutions of the diffusion equations mentioned

above, and for purely imaginary λ in expansions of solutions of wave

equations. The model parameter corresponds to the characteristic ex-

ponent (eigenvalue) of a mode. Our analysis will demonstrate rather

extreme consequences when numerical methods lack absolute stability

with respect to the approximating ODEs and the step-size employed.

We shall invite the reader to implement each example method on

(MS(λ)) and experiment with its behavior for certain combinations

of λ and h. We can use these programs to perform accuracy stud-

ies of each method by fixing λ = −1 while we successively halve h,

keeping Nh = T , and absolute stability studies by fixing h and suc-

cessively doubling λ. To understand our results, we will describe the

amplification factor and region of absolute stability for each method.

The results regarding theoretical convergence can be formulated

quite nicely in terms of the model problems as follows. A method

is 0-stable if and only if it is absolutely stable applied to MS(0), a

condition that is automatically satisfied by Runge-Kutta Methods.

142 5. Numerical Methods

We say that a numerical method has formal accuracy (or polynomial

accuracy) of order P if it can be applied to every problem in the

class (MA(P)) using exact initial values and the resulting numerical

solution is exact (yn = y(tn) for all time-steps tn, n ≥ 0). Because of

this, a method is consistent if and only if it has polynomial accuracy of

order P ≥ 1. Therefore a method is convergent if and only if it is exact

in the sense above onMA(1) and absolutely stable onMS(0). In terms

of its coefficients, the Runge-Kutta Method (5.3), (5.3′) is consistent

if and only if
∑r

i=1 γi = 1, and the the linear multistep method (5.4)

is consistent if and only if
∑m

j=0 aj = 1 and
∑m

j=−1 bj−
∑m

j=0 jaj = 1.

Each additional degree of polynomial accuracy depends on one

additional algebraic condition on the coefficients. Each degree of for-

mal, polynomial accuracy implies another order of actual accuracy

for 0-stable linear multistep methods. For Runge-Kutta Methods,

beyond second order, this polynomial accuracy of degree P is in-

sufficient to guarantee general accuracy. For P = 3, an additional

condition on the accuracy of a Runge-Kutta Method when applied

to MS(P) is sufficient to guarantee general P th-order accuracy, but

even this is insufficient for any greater P . For this reason, a more

correct name for the model problems (MA(P)) might be the linear

multistep accuracy model problems, and for P = 1, the consistency

model problem. Further details and discussion of issues pertaining

individually to Runge-Kutta Methods and linear multistep methods

may be found in Appendices H and I, respectively.

Although the model problems MS(0) and MA(0) both refer to

the same ODE, y′ = 0, 0-stability only excludes unbounded growth;

it does not require exactness. Numerical solutions of MS(λ) obtained

from the linear multistep method (5.4) remain bounded as n → ∞ if

and only if the roots of the characteristic polynomial of the method

pw(r) = ρ(r)− wσ(r), where

ρ(r) = rm −
m−1∑
j=0

ajr
m−(j+1), and σ(r) =

m−1∑
j=−1

bjr
m−(j+1)

(5.9)

satisfy the following root condition: All roots are either inside the unit

5.1. Introduction 143

circle in the complex plane or on the unit circle and simple. In fact,

one definition of absolute stability for a linear multistep method with

respect to MS(λ) is that the roots of pw(r) satisfy the root condition

when w = λh. Under that definition of absolute stability, 0-stability

is immediately equivalent to absolute stability with respect to MS(0),

and to the fact that ρ(r) satisfies the root condition.

So for methods of the form (5.3), (5.3′), and (5.4) the classes of

model problems MA(P) and MS(λ) are sufficient to determine the

theoretical issue of convergence, the practical issue of linearized abso-

lute stability, and even higher-order accuracy, except for Runge-Kutta

Methods beyond P = 3. But even for linear multistep methods, we

will discover that attaining high-order accuracy tends to compete with

retaining absolute stability when h is not vanishingly small. Only by

increasing the per-step computational effort, including the number of

evaluations of the vector field required for each time-step can both be

increased independently. In particular, implicit methods that permit

greater accuracy without compromising stability require additional

effort to solve the nonlinear equations that define each step.

In conclusion, many factors must be considered in choosing or

designing an efficient method for a specific problem and its param-

eters. Our understanding of the practical performance of numerical

methods can be guided effectively in terms of the order of accuracy

and absolute stability of a method. These two concepts interact to

determine the step-size required to obtain an approximation within

a specified tolerance, when using a particular method on a particular

ODE. Along with the problem-specific computational effort required

per step, reflecting the number of stages and steps in the method

and the work required to evaluate the vector field, they determine

the relative efficiency of different methods in different situations. It

is important to realize that no method is universally superior to all

others, and the selection of an effective method depends upon care-

ful consideration of features of the problem or class of problems one

wishes to solve and the accuracy of approximation required.

144 5. Numerical Methods

5.2. Fundamental Examples and Their Behavior

Now we introduce several working examples of numerical methods

for IVPs that are motivated by relatively elementary principles. Then

we will apply them to the model problems we introduced above. We

will focus on how their behavior depends on the nature of the problem

and the step-size. We do not claim that a method that performs well

on such simple problems will necessarily perform well on more chal-

lenging problems. However, methods that perform poorly on simple

problems with certain features will likely not perform well on more

complex problems with similar features.

•Example 5–1. Euler’s Method. The most familiar and elemen-

tary method for approximating solutions of an initial value problem is

Euler’s Method. Euler’s Method approximates the derivative in (5.1)

by a finite difference quotient y′(t) ≈ (y(t + h) − y(t))/h. We shall

usually discretize the independent variable in equal increments:

tn+1 = tn + h, n = 0, 1, . . . , t0 = to. (5.10)

Henceforth we focus on the scalar case, N = 1. Rearranging the

difference quotient gives us the corresponding approximate values of

the dependent variable:

yn+1 = yn + hf(tn, yn), n = 0, 1, . . . , y0 = yo. (5.11)

Euler’s Method is an r-stage Runge-Kutta Method (5.3) with r = 1,

γ1 = 1, and β11 = 0. It is also a linear m-step method (5.4) with

m = 1, a0 = 1, b−1 = 0, and b0 = 1. Since b−1 = 0, it is explicit.

However, it is too simple to capture essential features that occur for

m or r > 1 and that we will find present in our next examples.

Geometrically, Euler’s Method follows the tangent line approx-

imation through the point (tn, yn) for a short time interval, h, and

then computes and follows the tangent line through (tn+1, yn+1), and

so on, as shown in Figure 5.1.

�Exercise 5–1. Write a program that implements Euler’s Method,

the values of f(t, y) coming from a function defined in the program.

Test the results on the model problem (MS(λ)),

y′ = λy, y(0) = 1, t ∈ [0, T], y, λ ∈ R,

5.2. Fundamental Examples and Their Behavior 145

Figure 5.1. Interpretation of Euler’s Method.

whose analytical solution is y(t) = 1eλt. Use T = 1 and combinations

of λ = ±2l, l = 0, 1, . . . , L, and h = 2−m,m = 0, 1, 2, . . . ,M , L = 5,

M = 5.

The anticipated results for l = 0 (λ = −1) and m = 0, . . . , 4 are

displayed along with the exact solution in Figure 5.2.

Strictly speaking, Euler’s Method generates a sequence of points

in the (t, y)-plane, but we conventionally associate this sequence with

the piecewise-linear curve obtained by joining consecutive points with

line segments. Figure 5.2 shows three of these approximating curves

and illustrates an important distinction involved in analyzing the con-

vergence of these approximations. We call the difference between the

exact solution and an approximate solution at a certain value of to+T

a global error , since it is the cumulative result of local errors intro-

duced in each of N steps of size h = T/N and the propagation of

errors accumulated in earlier steps to later steps. These errors may

either be amplified or attenuated from earlier steps to later steps.

146 5. Numerical Methods

Figure 5.2. Behavior of Euler’s Method: Accuracy.

Global errors corresponding to N = 1, 2, and 4 are represented by

vertical lines at T = 1. As this implies, a local error does not include

the effect of prior errors but is the difference between one step of an

approximate solution and the exact solution sharing the same initial

value and time interval over that one step. Local errors for one step

of Euler’s Method starting at (0, 1), with N = 1, 2, and 4, are rep-

resented by vertical lines at T = 1, 1/2, and 1/4, respectively. Two

kinds of local errors are discussed and depicted in the final section

of the chapter on convergence analysis. Local truncation errors arise

when a step of a method is initialized using the exact solution values.

Another local error involves local solutions ŷn(t) passing through val-

ues of the numerical solution (tn, yn). In Figure 5.2, h decreases by

factors of 1/2 while the number of steps doubles. The figure indi-

cates that local errors for Euler’s Method are on the order of h2. At

tN = T = 1 it appears that the difference between the approximate

solution and the analytical solution also decreases by a factor of 1/2.

5.2. Fundamental Examples and Their Behavior 147

This suggests that for Euler’s Method, global errors are on the order

of h.

According to the description in the introduction, the near pro-

portionality of errors at y(1) to h1 suggests that Euler’s Method has

order of accuracy 1, or in other words that it is first-order accurate.

To perform an analytical accuracy study of Euler’s Method, we

apply it to the class of accuracy model problems (M2
A) written in the

form

y′ =
d

dt
(c1(t− to) + c2(t− to)

2), y(to) = yo, (5.12)

whose analytical solution is

y(t) = yo + c1(t− to) + c2(t− to)
2. (5.12′)

When Euler’s Method is applied to (5.12), it reduces to yn+1 =

yn + h(c1 + 2c2nh). Using
∑N−1

n=1 2n = N(N − 1), we find that yN =

y0 + c1Nh+ c2h
2(N2 −N). In terms of tn − to,

yN = y0 + c1(tn − to) + c2(tn − to)
2 − c2h(tn − to)

and the global error at time T = Nh satisfies

y(to + T)− yN = (yo − y0) + c2Th.

Setting c2 = 0 shows that Euler’s Method is exact when y(t) is a

polynomial of degree 1. For a polynomial of degree 2, its error at a

fixed T is proportional to the first power of the time-step h. When

we estimate the global error in the general case to prove convergence,

the bound will involve a factor maxt∈[to,to+T]
y′′(t)

2 that reduces to the

factor of c2 above.

To perform an analytical absolute stability study of Euler’s Meth-

od, we apply it to the class of stability model problems (MS(λ)).

When Euler’s Method is applied to these model problems, it reduces

to yn+1 = (1+w)yn, where we have combined the model parameter λ

and discretization parameter h into a single parameter w = λh. The

exact solution with the same initial condition yn and time interval h

is yne
λh = yn(1 + λh + (λh)2/2 + (λh)3/3! + · · ·). In this context,

one step of Euler’s Method captures the terms of order h1 in the

exact solution correctly, and the remainder is bounded by a multiple

148 5. Numerical Methods

of h2. Successive iterates of Euler’s Method can be written as yn =

(1+w)nyo. Heuristically, N errors of order h2 accumulate to give an

error of order h. Stability is necessary in order to make this argument

rigorous.

The absolute stability properties of Euler’s Method are illustrated

by results of the exercise for m = 3 (h = 1/8) and λ = −2l, l =

0, . . . , 5, displayed in Figure 5.3. The value of λ appears adjacent

to the corresponding exact and approximate solutions. As λ grows

progressively more negative to λ = −16 where w = −2 and yn =

(1 + w)nyo = (−1)n, the approximate solution does not decay but

simply oscillates. Beyond this value, e.g., λ = −32 so w = −4 and

(1 + w)n = −3n, the oscillations grow exponentially as shown in

Figure 5.4. Note that some of the approximations in the accuracy and

stability figures share the same values of w, e.g., λ = −8, h = 1/8,

and λ = −1, h = 1; the independent variable must still be rescaled in

order to make them correspond exactly. According to the description

in the introduction, it follows from the form of the above solution that

Euler’s Method is absolutely stable with respect to the model problem

when |1 + λh| ≤ 1. We will also be examining the model problem in

the complex plane—that is, we will interpret λ as complex and replace

the real scalar y with its complex equivalent, z. Thus we call {w ∈ C |
|1 +w| ≤ 1}, the closed disc of radius 1 about the point w = −1, the

region of absolute stability for Euler’s Method. The region of absolute

stability of Euler’s Method is depicted in Figure 5.14, together with

the corresponding regions for the remaining example methods after

they too have been analyzed.

In some important applications we will consider later, the in-

stability exhibited by Euler’s Method in Figure 5.4 has unavoidable

negative consequences that can only be resolved by resorting to im-

plicit methods such as those that we will derive below. In other

circumstances, the rate of convergence exhibited by Euler’s Method

in Figure 5.2 is also unsatisfactory, and practical efficiency consid-

erations require methods with higher-order accuracy, obtained from

either multistep or multistage strategies. Along with performance

improvements, each of these modifications brings with it important

implementation considerations that do not appear in Euler’s Method

5.2. Fundamental Examples and Their Behavior 149

Figure 5.3. Behavior of Euler’s Method: Stability.

Figure 5.4. Behavior of Euler’s Method: Instability.

due to its simplicity. We shall see that these considerations provide

both challenges and opportunities.

To obtain the most basic examples of these kinds of methods, we

provide another interpretation of Euler’s Method and then modify it.

In addition to the tangent line and difference quotient interpretations

above, Euler’s Method can be viewed as arising from the left endpoint

150 5. Numerical Methods

approximation of the integral of y′ over an interval of width h:

y(t+ h)− y(t) =

∫ t+h

t

y′(s) ds ≈ hy′(t). (5.13)

To improve upon Euler’s Method, we can use more symmetric ap-

proximations: ∫ t+h

t

y′(s) ds ≈ hy′(t+
h

2
) (5.14)

and ∫ t+h

t

y′(s) ds ≈ h
y′(t) + y′(t+ h)

2
. (5.15)

Both are exact if y is a polynomial of degree ≤ 2 (see Appendix J).

We expect that the methods known as the midpoint method and

the leapfrog method, both obtained from (5.14) in the form

y(t+ h)− y(t) ≈ hy′(t+
h

2
), (5.16)

and the trapezoidal method, obtained from (5.15) in the form

y(t+ h)− y(t) ≈ h
y′(t) + y′(t+ h)

2
, (5.17)

would lead to more accurate approximations of (5.1) than Euler’s

Method. In the next section we will show rigorously that they do. The

geometric interpretation of these approximations and of the Euler’s

Method approximation, (5.13), are depicted in Figure 5.5.

Figure 5.5. Interpretation of some basic methods.

5.2. Fundamental Examples and Their Behavior 151

�Exercise 5–2. The mean value theorem guarantees that the dif-

ference quotient (y(t+ h)− y(t))/h is equal to y′(ξ), not at ξ = t or

ξ = t + h, but rather at some point ξ strictly between t and t + h.

Show that for any polynomial p2(t) of degree ≤ 2, (5.14)–(5.17) are

exact, that is,
p2(t+ h)− p2(t)

h
= p′2(t+

h

2
)

and also
p2(t+ h)− p2(t)

h
=

p′2(t) + p′2(t+ h)

2
.

•Example 5–2. The midpoint method. To obtain the midpoint

method from (5.16), we discretize tn as in (5.10) and approximate

y′(t+
h

2
) = f(t+

h

2
, y(t+

h

2
))

using one step of Euler’s Method with time-step h
2 as follows:

yn+ 1
2
= yn + hf(tn, yn),

yn+1 = yn + hf(tn +
h

2
, yn+ 1

2
), n = 0, 1, (5.18)

The midpoint method is an explicit r-stage Runge-Kutta Method,

with r = 2, γ1 = 0, γ2 = 1, β11 = β12 = β22 = 0, and β21 = 1
2 .

�Exercise 5–3. If we accept the fact that the global error in Eu-

ler’s Method is proportional to h within O(h2), the midpoint method

can be derived using a technique known as extrapolation. Show that

applying this assumption to one Euler step of size h and two steps of

size h
2 tells us

yn+1 = yn + hf(tn, yn) + Ch+O(h2)

and

yn+1 = yn+
h

2
f(tn, yn)+

h

2
f(tn+

h

2
, yn+

h

2
f(tn, yn))+C

h

2
+O(h2).

Then form a combination of these formulas, twice the latter minus

the former, to obtain the midpoint method:

yn+1 ≈ yn + hf(tn +
h

2
, yn +

h

2
f(tn, yn)) +O(h2).

152 5. Numerical Methods

�Exercise 5–4. Modify the program implementing Euler’s Method

to implement the midpoint method on the model problem (MS(λ)),

using the same parameters, and compare the results.

For our analytical accuracy study of the midpoint method, we

consider the class of initial value problems (M3
A) written in the form

y′ =
d

dt
(c1(t− to) + c2(t− to)

2 + c3(t− to)
3), y(to) = yo, (5.19)

whose exact solution is

y(t) = yo + c1(t− to) + c2(t− to)
2 + c3(t− to)

3. (5.19′)

This is simply the next higher-order analogue of (5.12).

If we apply the midpoint method to (5.19), it reduces to

yn+1 = yn + h

(
c1 + c2(2n+ 1)h+ 3c3

(
(2n+ 1)h

2

)2
)
.

Using
∑N−1

n=0 2n+ 1 = N2 and
∑N−1

n=0 3(2n+ 1)2 = 4N3 −N , we find

yN = y0 + c1Nh+ c2(Nh)2 + c3(Nh)3 − c3h
3N

4
.

From this, we see that the global error at time T = Nh satisfies

y(to + T)− yN = (yo − y0) +
1
4c3Th

2. The midpoint method is exact

when y(t) is a polynomial of degree 2, and for a polynomial of degree

3, the error at a fixed T is proportional to h2. While formal accuracy

analysis using the model problems (MA(P)) does not in general tell

the whole story regarding accuracy of Runge-Kutta Methods, if P ≤
2, formal order of accuracy P does imply order of accuracy P . We

will discuss these issues in greater detail below and in Appendix H.

In the context of the model problem, with w = λh, the midpoint

method becomes yn+1 = (1 + w + w2/2)yn whose solution is yn =

(1 + w + w2/2)nyo.

Figure 5.6 depicts the results of using the midpoint method with

the same parameters as in Figure 5.3. As h decreases by factors of
1
2 , the number of steps doubles. At tN = T = 1 it now appears that

the difference between the approximate solution and the analytical

solution decreases by a factor of 1/4, suggesting that the midpoint

5.2. Fundamental Examples and Their Behavior 153

Figure 5.6. Behavior of the midpoint method: Accuracy.

method is second-order accurate; i.e., its order of accuracy is 2. The

approximation with j = 5, h = 1/32 is indistinguishable from the

exact solution. We might expect this behavior from the observation

that one step of the midpoint method captures the terms of order

≤ w2 in the exact solution yne
w = yn(1 + w + w2/2 + w3/3! + · · ·)

correctly, and the remainder is bounded by a multiple of w3.

In the same fashion, Figure 5.7 corresponds to Figure 5.3, except

the final value of λ has been changed from −16 to −17 to illustrate the

incipient instability similar to that of Euler’s Method when w < −2.

For λ = −16, w = −2, the approximate solution yn = 1n neither

decays nor grows, nor does it oscillate as it did when Euler’s Method

was used. From the solution above, the midpoint method is absolutely

stable with respect to the model problem when |1+λh+(λh)2/2| ≤ 1.

In the complex plane, the region of absolute stability for the midpoint

method is then {w ∈ C | |1 + w + w2/2| ≤ 1}.

154 5. Numerical Methods

Figure 5.7. Behavior of the midpoint method: Stability.

•Example 5–3. The Leapfrog Method. To obtain the leapfrog

method, we discretize tn as in (5.10), but we double the time interval,

h, and write the midpoint approximation (5.16) in the form

y′(t+ h) ≈ (y(t+ 2h)− y(t))/h

and then discretize it as follows:

yn+1 = yn−1 + 2hf(tn, yn). (5.20)

The leapfrog method is a linear m = 2-step method, with a0 = 0,

a1 = 1, b−1 = −1, b0 = 2, and b1 = 0. It uses slopes evaluated at odd

values of n to advance the values at points at even values of n, and

vice versa, reminiscent of the children’s game of the same name. For

the same reason, there are multiple solutions of the leapfrog method

with the same initial value y0 = yo. This situation suggests a poten-

tial instability present in multistep methods, which must be addressed

5.2. Fundamental Examples and Their Behavior 155

when we analyze them—two values, y0 and y1, are required to ini-

tialize solutions of (5.20) uniquely, but the analytical problem (5.1)

only provides one. Also for this reason, one-step methods are used to

initialize multistep methods.

�Exercise 5–5. Modify the program implementing Euler’s Method

to implement the leapfrog method on the model problem (MS(λ)), us-

ing the same parameters. Initialize y1 1) using the ‘constant method’,

y1 = y0, 2) using one step of Euler’s Method, y1 = y0 + hf(t0, y0),

and 3) using one step of the midpoint method. Compare the results.

Figure 5.8. Behavior of the leapfrog method: Accuracy.

If we apply the leapfrog method to (5.19), it reduces to

yn+1 = yn−1 + 2h(c1 + 2c2nh+ 3c3(nh)
2).

156 5. Numerical Methods

If N = 2K is even, we use
∑K

k=1 4(2k − 1) = (2K)2 = N2 and∑K
k=1 6(2k − 1)2 = (2K − 1)(2K)(2K + 1) = N3 −N to show that

yN = y0 + c1Nh+ c2(Nh)2 + c3(Nh)3 − c3Nh3.

If N = 2K + 1 is odd, we use
∑K

k=1 4(2k) = (2K + 1)2 − 1 = N2 − 1

and
∑K

k=1 6(2k)
2 = 2K(2K + 1)(2K + 2) = N3 −N to show

yN = y1−(c1h+c2h
2+c3h

3)+c1Nh+c2(Nh)2+c3(Nh)3−c3(N−1)h3.

From this, we see that the global error at time T = Nh satisfies

y(to + T)− yN = (y(0)− y0) +
1

4
c3Th

2

when N is even and

y(to + T)− yN = (y(t1)− y1) + c3(Th
2 − h3)

when N is odd.

Assuming at first that y0 = yo and y1 = y(t1), the leapfrog

method is exact when y(t) is a polynomial of degree 2, and for a

polynomial of degree 3, the error at a fixed T is proportional to h2.

When the initial values are not exact, the formulas illustrate the

dependence of global errors on the values used to initialize linear

multistep methods. If the leapfrog method is initialized with the

constant method, i.e., if we use y1 = yo, then y(t1) − y1 = y(t1) −
y(t0) = y′(ξ)h for some ξ ∈ (t0, t1), the overall error degrades to

O(h) and the effort involved in employing a higher-order method is

wasted. If we use Euler’s Method, y1 = yo + hy′(t0), then y(t1) −
y1 = y(t1)− (y(t0) + hy′(t0)) = y′′(ξ)h

2

2 for some ξ ∈ (t0, t1) has the

same order of magnitude as the largest other term contributing to the

global error. The overall error achieves its maximum potential order

of O(h2). The principle is the same for methods with more steps and

initialization values. We only need to initialize using a method whose

global error has order one less than the method it initializes. Only the

local errors of the initialization method affect the global error of the

overall method, since they are incurred over a fixed number of steps

independent of h. In contrast, to reach a fixed to + T , the number

of steps of the method being initialized is N = Th−1. This factor is

responsible for the different orders of magnitude of global errors, and

5.2. Fundamental Examples and Their Behavior 157

both local and initialization errors. There is no benefit gained from

any additional effort devoted to computing initialization values more

accurately. If we used one step of the midpoint method or Heun’s

Method instead of Euler’s Method to compute y1, improvement in

the accuracy of the solution, if any, would be negligible.

We have implicitly assumed that we can use the analytical initial

value yo to initialize a numerical method. But even for a one-step

method, sometimes initial values themselves are only computed ap-

proximately. If we imagine stopping a computation and then con-

tinuing, the results must be identical to those obtained had we not

stopped in the first place. If we compare several steps of a compu-

tation with the same computation broken into two, the results are

clearly the same. In the latter case, the second part begins with an

inexact value. Fortunately, the new initial error is the order of the

global error of the numerical method, and we have seen that this is

all that is required in order for global errors to continue having the

same order.

When the leapfrog method is applied to the absolute stability

model problem (MS(λ)), it takes the form yn+1 = yn−1 + 2wyn.

This is a linear second-order constant coefficient difference equation

whose general solution is a linear combination, yn = c+y
+
n + c−y

−
n ,

of two basic solutions, y+n = rn+ and y−n = rn−, where r± are roots of

pw(r) = r2−2wr−1, the characteristic polynomial associated with the

leapfrog method. In general, we find that yj = rj is a nonzero solution

of (5.4) if and only if r is a root of the characteristic polynomial of

(5.4),

pw(r) = ρ(r)− wσ(r)

where ρ(r) = rm −
m−1∑
j=0

ajr
m−(j+1) and σ(r) =

m−1∑
j=−1

bjr
m−(j+1).

(5.21)

For any real w the characteristic polynomial of the leapfrog meth-

od has two distinct roots given by the quadratic formula, r± =

w ±
√
w2 + 1. When w > 0, r+ > 1 and −1 < r− < 0, and when

w < 0, 0 < r+ < 1 and r− < −1. (If w = 0, then r± = ±1.)

158 5. Numerical Methods

Therefore, when λ < 0 and the analytic solution has exponentially de-

creasing magnitude, the leapfrog method applied to the model prob-

lem exhibits unstable exponential growth regardless of how small h

may be, as long as c− �= 0. Since c− = 0 implies yn+1 = r+yn, if

we initialize y1 using one step of Euler’s Method, or either of the

other methods suggested above, we are guaranteed c− �= 0. Using

a binomial expansion, (1 + u)1/2 = 1 + u/2 − u2/8 + · · · , |u| < 1,

r+ = 1+w+w2/2−w4/8+ · · · , |w| < 1; i.e., for small |w|, one step

of the mode r+ of the leapfrog method agrees with the terms of order

≤ w2 in the exact solution yne
w, and the remainder is bounded by a

multiple of w3. When w approaches zero along the negative real axis,

r+ ≈ 1+w has magnitude less than 1. Since r+r− = −1, or using the

expansion above, r− ≈ −1 +w−w2/2, in this situation r− has mag-

nitude greater than 1 and the powers of r− explain the exponentially

growing oscillations observed in solutions of the leapfrog method.

Figure 5.8 shows a series of results using the leapfrog method

with the same parameters as in Figures 5.2 and 5.5—as h decreases

by factors of 1/2, the number of steps N gets doubled. (We start

with l = 2, h = 1/2 since it is a 2-step method.) At tN = T = 1,

the difference between the approximate solution and the analytical

solution decreases by a factor of 1/4, similar to the behavior of the

midpoint method. Along with the accuracy model analysis, this adds

evidence that the leapfrog method is also second-order accurate. The

approximation with j = 5, h = 1/32 is indistinguishable from the

exact solution. Figure 5.9 is a stability study corresponding to to

Figures 5.3 and 5.7, but to capture the behavior with different pa-

rameters, the time-steps h and time intervals T are varied along with

λ. Starting with λ = −1 and h = 1/8 as before, we have extended

the time interval to T = 8 to observe the visible onset of instability.

Each time λ is doubled, we have divided h by four so w = λh is

halved, but this only accelerates the onset of instability, and our time

intervals must shrink so that further amplification does not prevent

us from showing the results on a common graph. From the form of

the solution above, the leapfrog method is only absolutely stable with

respect to the real scalar model problem when w = 0. We will analyze

the situation for complex w when we apply the leapfrog method to a

5.2. Fundamental Examples and Their Behavior 159

2× 2 system below. We will see that the region of absolute stability

for the leapfrog method is the open interval on the imaginary axis,

{w ∈ C | w = bi,−1 < b < +1}, i.e., the set of complex w such that

w = −w̄ and |w| < 1. The endpoints are not included because when

w = ±i, pw(r) = r2 ± 2ir − 1 = (r ± i)2 has a multiple root on the

unit circle, so the general solution of the difference equation has an

algebraically growing mode.

Figure 5.9. Behavior of the leapfrog method: Stability.

•Example 5–4. The trapezoidal method. To obtain the trape-

zoidal method, we define tn as above and discretize (5.15) as follows:

yn+1 = yn + h
f(tn, yn) + f(tn+1, yn+1)

2
, n = 0, 1, (5.22)

The trapezoidal method is classified as an implicit method because

each step requires solving an equation to obtain yn+1. In contrast,

Euler’s Method is called an explicit method because yn+1 is given

parametrically. We will see that implicit methods can have stability

advantages that make them more efficient in spite of this additional

computational work needed to implement them.

160 5. Numerical Methods

The trapezoidal method is an implicit linear m-step method with

m = 1, a0 = 1, b0 = 1/2, and b−1 = 1/2. It is also an implicit r-stage

Runge-Kutta Method with r = 2, γ1 = γ2 = 1/2, β11 = β12 = 0, and

β21 = β22 = 1/2. Even though the trapezoidal method is a 2-stage

method, only one new evaluation of f is required per time-step after

the first step. In general, if both y′n and y′n+1 are among the r > 1

evaluations of an r-stage method, the number of new evaluations per

time-step after the first step is r − 1.

�Exercise 5–6. Modify the program implementing Euler’s Method

to implement the trapezoidal method on the model problem (MS(λ)),

using the same parameters. To find yn+1, you may treat (5.22) as a

fixed-point problem yn+1 = g(yn+1) and implement fixed-point it-

eration, y
(k+1)
n+1 = g(y

(k)
n+1). Or you may rewrite (5.22) in the form

F (yn+1) = 0 and apply a root-finding method, e.g., Newton’s Method ,

y
(k+1)
n+1 = y

(k)
n+1 − F ′(y

(k)
n+1)

−1F (y
(k)
n+1). In the case of the model prob-

lem, using the analytical solution is the simplest approach, although

this would not be useful for general ODEs.

If we apply the trapezoidal method to (5.19), it reduces to

yn+1 = yn + h(c1 + c2(2n+ 1)h+ 3c3
(nh)2 + ((n+ 1)h)2

2
).

The right-hand side is close to the right-hand side we obtained when

we applied the midpoint method to (5.19), only less an additional

3c3h
3 1
4 . Modifying the solution appropriately, we find the trapezoidal

method yields

yN = y0 + c1Nh+ c2(Nh)2 + c3(Nh)3 − c3h
3N

2

and the global error at time T = Nh satisfies y(to + T) − yN =

(yo − y0) +
1
2c3Th

2. The trapezoidal method is exact when y(t) is a

polynomial of degree 2, and for a polynomial of degree 3, the error at

a fixed T is proportional to the second power of the time-step, h2.

When the trapezoidal method is applied to the absolute stability

model problem (MS(λ)), it takes the form

yn+1 = (1 + w/2)(1− w/2)−1yn,

5.2. Fundamental Examples and Their Behavior 161

Figure 5.10. Behavior of the trapezoidal method: Accuracy.

so yn = ((1+w/2)/(1−w/2))nyo. Using a geometric series expansion,

(1−w/2)−1 = 1+(w/2)+(w/2)2+(w/2)3 · · · , |w/2| < 1, so for small

w, one step of the trapezoidal method applied to the model problem,

(1+w/2)(1−w/2)−1 = 1+ (w/2)+ (w/2)2 + · · ·+ (w/2)+ (w/2)2 +

(w/2)3 · · · = 1 + w + w2/2 + w3/4 + · · · , captures the terms of order

≤ w2 in the exact solution yne
w, and the remainder is bounded by a

multiple of w3.

In Figure 5.10, the trapezoidal method is employed with the same

parameters as in Figure 5.3. As usual, each time h decreases by fac-

tors of 1/2, the number N of steps doubles. At tN = T = 1, as with

the midpoint and leapfrog methods, the difference between the ap-

proximate solution and the analytical solution appears to decrease by

a factor of 1/4, suggesting that the order of accuracy for the trape-

zoidal method is also 2. The approximations with j ≥ 4, h ≤ 1/16 are

162 5. Numerical Methods

indistinguishable from the exact solution. In the same fashion, Figure

5.11 corresponds to Figure 5.4. At increasingly negative values of λ,

we begin to observe the numerical solution becoming oscillatory and

decaying less rapidly, even though the analytical solution continues

to decay monotonically and more rapidly. This should be expected,

since the factor (1 + w/2)(1− w/2)−1 → −1 as w → −∞. From the

form of the solution above, we should expect absolute stability when

|(1+w/2)(1−w/2)−1| ≤ 1, and instability otherwise. Rewriting this

condition as |w− (−2)| < |w−2|, we see that the trapezoidal method

should be absolutely stable for any value of w that is closer to −2 than

to +2. The trapezoidal method is absolutely stable with respect to

the model problem for any w ≤ 0. Below, when we consider the com-

plex scalar model problem, equivalent to the real 2×2 model problem

in the plane, we will see that the region of absolute stability for the

trapezoidal method is the closed left half-plane {w ∈ C | Re(w) ≤ 0}.
A method that is absolutely stable for any complex w whose real

part is negative is known as an A-stable method.

•Example 5–5. The modified trapezoidal method (aka

Heun’s Method and the improved Euler Method). We can

approximate the solution of the nonlinear equation that defines the

trapezoidal method (5.22) quite easily if we approximate the value of

yn+1 on its right-hand side by using one step of Euler’s Method and

solve for yn+1 as follows:

ȳn+1 = yn + hf(tn, yn),

yn+1 = yn + h
f(tn, yn) + f(tn+1, ȳn+1)

2
, n = 0, 1, . . . (5.23)

This is another example of the explicit Runge-Kutta Methods and is

known by many names, including the modified trapezoidal method,

Heun’s Method, and the improved Euler Method. Heun’s Method is

an explicit r-stage Runge-Kutta Method, with r = 2, γ1 = γ2 = 1/2,

β11 = β12 = 0, β21 = 1, and β22 = 0. When Heun’s Method is

applied to the stability model problem (MS(λ)), it coincides with the

midpoint method, and so the results of the exercise will be identical

and their regions of absolute stability are the same. When Heun’s

Method is applied to the accuracy model problem (5.19), it coincides

5.2. Fundamental Examples and Their Behavior 163

Figure 5.11. Behavior of the trapezoidal method: Stability.

with the trapezoidal method and so its formal order of accuracy is

also 2.

We can also view (5.23) as a predictor-corrector method asso-

ciated with the trapezoidal method (5.22). It may be worthwhile

to solve the nonlinear equations associated with an implicit method

using higher-order Newton-Raphson and quasi-Newton algorithms.

These will usually require problem-specific implementations for eval-

uating or approximating and inverting derivatives involving consid-

erable overhead. For universality and simplicity it is often preferable

to take advantage of the natural fixed-point form

yn+1 = g(yn+1;h, yn, . . . , yn+1−m)

of implicit numerical methods. To solve this using fixed-point itera-

tion, we apply an explicit method called the ‘predictor’ to initialize

y
(0)
n+1. For example,

y0n+1 = yn + hf(tn, yn) (5.24)

164 5. Numerical Methods

is called an Euler predictor step. Then we apply one or more ‘correc-

tor’ steps, i.e., steps of the associated iteration algorithm

y
(k+1)
n+1 = g(y

(k)
n+1;h, yn, . . . , yn+1−m).

For (5.23), each step of

y
(k+1)
n+1 = g(y

(k)
n+1) = yn + h

f(tn, yn) + f(tn+1, y
(k)
n+1)

2
(5.25)

is called a trapezoidal ‘corrector’ step. When (5.24) is followed by one

trapezoidal corrector step, the result is (5.23). So one more name for

Heun’s Method is the Euler predictor-trapezoidal corrector method.

The Lipschitz constant of the fixed-point iteration mapping ap-

proaches the magnitude of the derivative of the iteration function at

the fixed point, |g′(yn+1)|. The iterations obtained from implicit nu-

merical methods depend on the parameter h and have yn as a fixed

point for h = 0. Since |g′(yn+1)| contains a factor of h, g will be a con-

traction on some neighborhood of yn provided h is sufficiently small,

and for any y
(0)
n+1 in this neighborhood, y

(k)
n+1 → yn+1 as k → ∞.

If we denote the ‘local solution’ of the ODE y′ = f(t, y) passing

through (tn, yn) by ŷn(t), a Qth-order accurate predictor produces

an initial approximation whose local error |y(0)n+1 − ŷn(tn+1)| has or-

der of magnitude hQ+1. A P th-order accurate predictor produces a

converged approximation whose local error |y(∞)
n+1 − ŷn(tn+1)| has or-

der of magnitude hP+1. By the triangle inequality, we can estimate

|y(∞)
n+1 − y

(0)
n+1| ≤ Chmin{P+1,Q+1}. Additional factors of h from the

iteration toward y
(∞)
n+1 only decrease the magnitude of the local error

for k ≤ P − Q. For example, the Euler predictor-trapezoidal cor-

rector method attains the full accuracy that would be obtained by

iterating the trapezoidal corrector to convergence. But in problems

where absolute stability is crucial, the difference in performance is

substantial.

The modified trapezoidal method is only absolutely stable if h

is sufficiently small, while the trapezoidal method is absolutely sta-

ble for any h. This additional labor that characterizes the implicit

method makes no difference at all to the order of accuracy, but all

5.2. Fundamental Examples and Their Behavior 165

the difference in the world to absolute stability. The extra effort of

each corrector iteration often pays itself back with interest by further

relaxing the absolute stability restriction on h.

The local errors of a P th-order accurate linear multistep method

have a specific asymptotic form Cŷ
(P+1)
n (tn)h

P+1 that can be deter-

mined from the coefficients of the method. This makes it possible to

use a predictor and corrector of the same order to estimate the error of

both methods efficiently, provided their constants C are distinct. For

example, the leapfrog predictor coupled with one trapezoidal correc-

tor iteration permits efficient error estimation and stabilization, even

though it does not add even one degree of accuracy to the predictor.

In contrast, the difference in local errors of different Runge-Kutta

Methods of the same order P ≥ 2 will in general be different for

different ODEs. This makes it difficult to use such a pair for error

estimation, and methods of different order are used instead. The

Euler predictor-trapezoidal corrector pair serves as a prototype of

Runge-Kutta error estimation. The local error of an order P − 1

predictor is |y(0)n+1 − ŷn(tn+1)| ≈ ChP . The local error of a corrector

of order P is |y(1)n+1 − ŷn(tn+1)| ≈ ChP+1. Therefore, the correction

|yn+1
(1) − yn+1

(0)| is an order hP+1 accurate estimate of the local

error of the lower order method. For an Euler predictor-trapezoidal

corrector pair, this technique estimates the error of the Euler step,

even though we advance using the corrected Heun step. The resulting

estimate is conservative, as one would want it. This approach is

also efficient, since the lower-order method is embedded; i.e., it only

involves evaluations performed by the higher-order method.

•Example 5–6. The Backward Euler Method. Another exam-

ple of an implicit method is the Backward Euler Method,

yn+1 = yn + hf(tn+1, yn+1), n = 0, 1, . . . , (5.26)

that arises by replacing the left endpoint approximation that charac-

terizes Euler’s Method with the right endpoint approximation. The

Backward Euler Method is an implicit linear m-step method with

m = 1, a0 = 1, b−1 = 1, and b0 = 0. It is also an explicit r-stage

Runge-Kutta Method with r = 1, γ1 = 1, and β11 = 1.

166 5. Numerical Methods

Figure 5.12. Behavior of the Backward Euler Method: Accuracy.

�Exercise 5–7. Modify the program implementing Euler’s Method

to implement the Backward Euler Method on the model problem

(MS(λ)), using the same parameters and using the options described

above for implementing the trapezoidal method.

To understand the accuracy of the Backward Euler Method ana-

lytically, we use the same class of accuracy model problems (M2
A) in

the same form (5.12), (5.12′) that we used to analyze Euler’s Method.

When the Backward Euler Method is applied to (5.12), it takes the

form yn+1 = yn+h(c1+2c2(n+1)h). Using
∑N−1

n=0 2(n+1) = N2+N ,

we find that yN = y0 + c1Nh+ c2h
2(N2 +N), or in terms of tn − to,

yN = y0 + c1(tn − to) + c2(tn − to)
2 + c2h(tn − to). From this, we

see that the global error at time T = Nh satisfies y(to + T) − yN =

(yo−y0)−c2Th. The method is exact on polynomials of degree 1, and

for a polynomial of degree 2, its error at a fixed T is proportional to

h. In the general case the bound involves a factor maxt∈[to,to+T]
y′′(t)

2

5.2. Fundamental Examples and Their Behavior 167

that reduces to the factor of c2 above. Note that the errors of Euler’s

Method and the Backward Euler Method have the same magnitude

but opposite signs on these problems. We can show that the leading

order errors in these methods are opposite in general and obtain a

more accurate method by averaging them. In its general form, this

process is known as extrapolation. Extrapolation by averaging Euler’s

Method and the Backward Euler Method is an alternate approach to

deriving the trapezoidal method.

When the Backward Euler Method is applied to the absolute

stability model problems (MS(λ)), it takes the form

yn+1 = (1− w)−1yn

whose solution is yn = (1/(1 − w))nyo. Using a geometric series

expansion, (1 − w)−1 = 1 + w + w2 + · · · , |w| < 1, so for small w,

the Backward Euler Method captures the terms of order ≤ w1 in the

exact solution yne
w, and the remainder is bounded by a multiple of

w2.

In Figure 5.12, the Backward Euler Method is employed with the

same parameters as in Figure 5.3, as h decreases by factors of 1/2, the

number of steps doubles. As with Euler’s Method, at tN = T = 1,

the difference between the approximate solution and the analytical

solution appears to decrease by a factor of 1/2, suggesting that the

Backward Euler Method has the same first-order accuracy as Euler’s

Method.

In the same fashion Figure 5.13 corresponds to Figure 5.4. Un-

like the trapezoidal method, at increasingly negative values of λ, the

Backward Euler Method does not generate oscillations. The factor

(1 − w)−1 → 0+ as w → −∞. From the form of the solution above,

we should expect absolute stability when |(1/(1 − w))| ≤ 1 and in-

stability otherwise. Rewriting this, the region of absolute stability

of the Backward Euler Method is {w ∈ C | |w − 1| ≥ 1}; i.e., the
Backward Euler Method should be absolutely stable for any complex

value of w outside the circle of radius 1 centered at w = 1. Like the

trapezoidal method, the Backward Euler Method is A-stable. Note

that in the right half-plane outside this circle, the Backward Euler

168 5. Numerical Methods

Figure 5.13. Behavior of the Backward Euler Method: Stability.

Method has decaying solutions where the analytic solution is growing

exponentially, the opposite problem to what we observed previously!

Implicit linear m-step methods with m > 1 can be obtained using

elementary means by simply doubling the discretization parameter of

the trapezoidal and Backward Euler Methods:

yn+1 = yn−1

+ 2h
f(tn−1, yn−1) + f(tn+1, yn+1)

2
, n = 0, 1, (5.27)

yn+1 = yn−1 + 2hf(tn+1, yn+1), n = 0, 1, (5.28)

We refer to (5.27) as the 2h trapezoidal method and to (5.28) as the

2h Backward Euler Method. We do not have to repeat the accuracy

studies for these methods since the results are easily obtained from

and are essentially the same as that of their 1-step relatives. Stability

is a different story. The approximations yn with even and odd n are

completely independent, and when these methods are applied to the

5.3. Summary of Behavior on Model Problems 169

model problem, both now possess an additional mode of the form

−1 + O(λh). Continuing this approach to mh methods only make

things worse. Any method of the form yn+1 = yn+1−m + h(· · ·) will
have m independent modes of the form e2πij/m + O(h) forming a

basis of solutions when it is applied to the model problem, resulting

in additional instability. Less contrived and better behaved examples

of implicit (and explicit) 2-step methods are derived and analyzed in

Appendix I.

•Example 5–7. The y-midpoint method (also known as the

implicit midpoint method). Our final example is another implicit

method that has features of midpoint and trapezoidal methods. We

will call it the y-midpoint method:

yn+1 = yn + hf(tn +
h

2
,
yn + yn+1

2
), n = 0, 1, (5.29)

We may also write this method in the form

yn+1 = yn + hy′n,1, where y′n,1 = f(tn +
h

2
, yn +

h

2
y′n,1) (5.29′)

that exhibits it as an r-stage Runge-Kutta Method, with r = 1, γ1 =

1, and β11 = 1/2. The form (5.29) shows that when the y-midpoint

method is applied to the stability model problem (MS(λ)), it coincides

with the trapezoidal method and so the results of the exercise will be

identical and their regions of absolute stability the same. When the y-

midpoint method is applied to the accuracy model problem (5.19), it

coincides with the ordinary midpoint method and so its formal order

of accuracy is also 2.

5.3. Summary of Method Behavior on Model Problems

To review what we have seen, all seven example methods satisfy the

condition of 0-stability, because w = 0 is in their regions of absolute

stability. Two of the seven, Euler’s Method and the Backward Euler

Method have formal accuracy of order 1, and the remaining five have

formal accuracy of order 2. Based on just these facts, rigorous theory

will show that they are all convergent and either first- or second-

order accurate, respectively. We summarize the formulas for one step

of each of our example methods, along with their order of accuracy

170 5. Numerical Methods

and the expressions for amplification factors that we have obtained

from analytical study of the absolute stability model problem in Table

5.1.

The regions of absolute stability obtained by bounding the mag-

nitude of the amplification factors by 1 are depicted in the shaded

regions of Figure 5.14. (The form of the regions for the leapfrog

method and higher-order Runge-Kutta Methods depend on analyses

given below.)

Figure 5.14. Regions of absolute stability for example methods.

The fact that w = 0 is in the region of absolute stability for six of

the methods can be viewed as a simple consequence of the fact that

they are one-step methods (and also Runge-Kutta Methods). For

y′ = 0 or just h = 0, they reduce to yn+1 = yn. For a multistep

method such as the leapfrog method, more analysis was required.

In the introduction, we referred to a condition associated with the

multistep method (5.4) when it is applied to the absolute stability

model problem (MS(λ)). In this situation, (5.4) reduces to a linear,

5.3. Summary of Behavior on Model Problems 171

